《Inferring Volatility in the Heston Model and its Relatives -- an
Information Theoretical Approach》
---
作者:
Nils Bertschinger and Oliver Pfante
---
最新提交年份:
2015
---
英文摘要:
Stochastic volatility models describe asset prices $S_t$ as driven by an unobserved process capturing the random dynamics of volatility $\\sigma_t$. Here, we quantify how much information about $\\sigma_t$ can be inferred from asset prices $S_t$ in terms of Shannon\'s mutual information $I(S_t : \\sigma_t)$. This motivates a careful numerical and analytical study of information theoretic properties of the Heston model. In addition, we study a general class of discrete time models motivated from a machine learning perspective. In all cases, we find a large uncertainty in volatility estimates for quite fundamental information theoretic reasons.
---
中文摘要:
随机波动率模型将资产价格$S_t$描述为由捕捉波动率$\\sigma_t$随机动态的未观察过程驱动。在这里,我们量化了根据香农的互信息$I(S_t:\\sigma_t)$,从资产价格$S_t$中可以推断出多少关于$\\sigma_t$的信息。这促使人们对赫斯顿模型的信息论性质进行仔细的数值和分析研究。此外,我们从机器学习的角度研究了一类离散时间模型。在所有情况下,我们都发现波动率估计中存在很大的不确定性,这是基于非常基本的信息论原因。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->