《On regularity of primal and dual dynamic value functions related to
investment problem》
---
作者:
Michael Mania and Revaz Tevzadze
---
最新提交年份:
2016
---
英文摘要:
We study regularity properties of the dynamic value functions of primal and dual problems of optimal investing for utility functions defined on the whole real line. Relations between decomposition terms of value processes of primal and dual problems and between optimal solutions of basic and conditional utility maximization problems are established. These properties are used to show that the value function satisfies a corresponding backward stochastic partial differential equation. In the case of complete markets we give conditions on the utility function when this equation admits a solution.
---
中文摘要:
研究了在整条实线上定义的效用函数的最优投资原问题和对偶问题的动态值函数的正则性。建立了原问题和对偶问题的值过程分解项之间的关系,以及基本效用最大化问题和条件效用最大化问题的最优解之间的关系。利用这些性质证明了该值函数满足一个相应的倒向随机偏微分方程。在完全市场的情况下,当这个方程允许解时,我们给出了效用函数的条件。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->