《On utility maximization without passing by the dual problem》
---
作者:
Miklos Rasonyi
---
最新提交年份:
2018
---
英文摘要:
We treat utility maximization from terminal wealth for an agent with utility function $U:\\mathbb{R}\\to\\mathbb{R}$ who dynamically invests in a continuous-time financial market and receives a possibly unbounded random endowment. We prove the existence of an optimal investment without introducing the associated dual problem. We rely on a recent result of Orlicz space theory, due to Delbaen and Owari which leads to a simple and transparent proof. Our results apply to non-smooth utilities and even strict concavity can be relaxed. We can handle certain random endowments with non-hedgeable risks, complementing earlier papers. Constraints on the terminal wealth can also be incorporated. As examples, we treat frictionless markets with finitely many assets and large financial markets.
---
中文摘要:
我们将效用函数为U:\\mathbb{R}到\\mathbb{R}$的代理从终端财富中的效用最大化处理,该代理动态地投资于连续时间金融市场,并获得可能无限的随机捐赠。在不引入对偶问题的情况下,证明了最优投资的存在性。我们依赖于Orlicz空间理论的一个最新结果,这是由Delbaen和Owari得出的,它给出了一个简单而透明的证明。我们的结果适用于非光滑工具,甚至可以放宽严格的凹度。我们可以处理某些具有不可对冲风险的随机捐赠,这是对早期论文的补充。也可以纳入对终端财富的限制。作为例子,我们处理具有有限多资产的无摩擦市场和大型金融市场。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->