英文标题:
《Ergodic robust maximization of asymptotic growth》
---
作者:
Constantinos Kardaras and Scott Robertson
---
最新提交年份:
2018
---
英文摘要:
We consider the problem of robustly maximizing the growth rate of investor wealth in the presence of model uncertainty. Possible models are all those under which the assets\' region $E$ and instantaneous covariation $c$ are known, and where additionally the assets are stable in that their occupancy time measures converge to a law with density $p$. This latter assumption is motivated by the observed stability of ranked relative market capitalizations for equity markets. We seek to identify the robust optimal growth rate, as well as a trading strategy which achieves this rate in all models. Under minimal assumptions upon $(E,c,p)$, we identify the robust growth rate with the Donsker-Varadhan rate function from occupancy time Large Deviations theory. We also prove existence of, and explicitly identify, the optimal trading strategy. We then apply our results in the case of drift uncertainty for ranked relative market capitalizations. Assuming regularity under symmetrization for the covariance and limiting density of the ranked capitalizations, we explicitly identify the robust optimal trading strategy in this setting.
---
中文摘要:
我们考虑了在存在模型不确定性的情况下,投资者财富增长率的鲁棒最大化问题。可能的模型是所有已知资产区域$E$和瞬时协变量$c$的模型,此外,资产是稳定的,因为其占用时间度量收敛于密度为$p$的定律。后一种假设的动机是观察到股票市场排名相对市场资本的稳定性。我们寻求确定稳健的最优增长率,以及在所有模型中实现该增长率的交易策略。在$(E,c,p)$的最小假设下,我们根据占用时间大偏差理论,用Donsker Varadhan速率函数确定了稳健增长率。我们还证明了最优交易策略的存在性,并明确确定了最优交易策略。然后,我们将我们的结果应用于排名相对市值的漂移不确定性情况。假设排名资本化的协方差和限制密度在对称化下具有正则性,我们在此设置下明确确定了鲁棒最优交易策略。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->