英文标题:
《Multi-factor approximation of rough volatility models》
---
作者:
Eduardo Abi Jaber (CEREMADE), Omar El Euch (X)
---
最新提交年份:
2018
---
英文摘要:
Rough volatility models are very appealing because of their remarkable fit of both historical and implied volatilities. However, due to the non-Markovian and non-semimartingale nature of the volatility process, there is no simple way to simulate efficiently such models, which makes risk management of derivatives an intricate task. In this paper, we design tractable multi-factor stochastic volatility models approximating rough volatility models and enjoying a Markovian structure. Furthermore, we apply our procedure to the specific case of the rough Heston model. This in turn enables us to derive a numerical method for solving fractional Riccati equations appearing in the characteristic function of the log-price in this setting.
---
中文摘要:
粗糙波动率模型非常有吸引力,因为它们非常适合历史波动率和隐含波动率。然而,由于波动过程的非马尔可夫和非半鞅性质,没有简单的方法来有效地模拟此类模型,这使得衍生品的风险管理成为一项复杂的任务。在本文中,我们设计了可跟踪的多因素随机波动率模型,该模型近似于粗糙波动率模型,并具有马尔可夫结构。此外,我们将我们的程序应用于粗糙赫斯顿模型的具体情况。这反过来又使我们能够推导出一种数值方法,用于求解在此设置下对数价格特征函数中出现的分数Riccati方程。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->