《News-based trading strategies》
---
作者:
Stefan Feuerriegel and Helmut Prendinger
---
最新提交年份:
2018
---
英文摘要:
The marvel of markets lies in the fact that dispersed information is instantaneously processed and used to adjust the price of goods, services and assets. Financial markets are particularly efficient when it comes to processing information; such information is typically embedded in textual news that is then interpreted by investors. Quite recently, researchers have started to automatically determine news sentiment in order to explain stock price movements. Interestingly, this so-called news sentiment works fairly well in explaining stock returns. In this paper, we design trading strategies that utilize textual news in order to obtain profits on the basis of novel information entering the market. We thus propose approaches for automated decision-making based on supervised and reinforcement learning. Altogether, we demonstrate how news-based data can be incorporated into an investment system.
---
中文摘要:
市场的奇迹在于,分散的信息被即时处理并用于调整商品、服务和资产的价格。金融市场在处理信息方面特别有效;这些信息通常嵌入文本新闻中,然后由投资者进行解释。最近,研究人员开始自动确定新闻情绪,以解释股价走势。有趣的是,这种所谓的新闻情绪在解释股票回报方面相当有效。在本文中,我们设计了利用文本新闻的交易策略,以便在新信息进入市场的基础上获取利润。因此,我们提出了基于监督和强化学习的自动决策方法。总之,我们展示了如何将基于新闻的数据纳入投资系统。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->