《Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid
Model》
---
作者:
Hyeong Kyu Choi
---
最新提交年份:
2018
---
英文摘要:
Predicting the price correlation of two assets for future time periods is important in portfolio optimization. We apply LSTM recurrent neural networks (RNN) in predicting the stock price correlation coefficient of two individual stocks. RNNs are competent in understanding temporal dependencies. The use of LSTM cells further enhances its long term predictive properties. To encompass both linearity and nonlinearity in the model, we adopt the ARIMA model as well. The ARIMA model filters linear tendencies in the data and passes on the residual value to the LSTM model. The ARIMA LSTM hybrid model is tested against other traditional predictive financial models such as the full historical model, constant correlation model, single index model and the multi group model. In our empirical study, the predictive ability of the ARIMA-LSTM model turned out superior to all other financial models by a significant scale. Our work implies that it is worth considering the ARIMA LSTM model to forecast correlation coefficient for portfolio optimization.
---
中文摘要:
预测未来时期两种资产的价格相关性在投资组合优化中非常重要。我们应用LSTM递归神经网络(RNN)预测两支股票的股价相关系数。RNN能够理解时间依赖关系。LSTM单元的使用进一步增强了其长期预测特性。为了在模型中同时包含线性和非线性,我们也采用了ARIMA模型。ARIMA模型过滤数据中的线性趋势,并将残值传递给LSTM模型。ARIMA LSTM混合模型与其他传统预测财务模型(如全历史模型、常数相关模型、单指数模型和多组模型)进行了对比测试。在我们的实证研究中,ARIMA-LSTM模型的预测能力在很大程度上优于所有其他金融模型。我们的工作表明,ARIMA LSTM模型用于预测投资组合优化的相关系数是值得考虑的。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->