《Neural Network for CVA: Learning Future Values》
---
作者:
Jian-Huang She, and Dan Grecu
---
最新提交年份:
2018
---
英文摘要:
A new challenge to quantitative finance after the recent financial crisis is the study of credit valuation adjustment (CVA), which requires modeling of the future values of a portfolio. In this paper, following recent work in [Weinan E(2017), Han(2017)], we apply deep learning to attack this problem. The future values are parameterized by neural networks, and the parameters are then determined through optimization. Two concrete products are studied: Bermudan swaption and Mark-to-Market cross-currency swap. We obtain their expected positive/negative exposures, and further study the resulting functional form of future values. Such an approach represents a new framework for modeling XVA, and it also sheds new lights on other methods like American Monte Carlo.
---
中文摘要:
在最近的金融危机之后,定量金融面临的一个新挑战是对信贷估值调整(CVA)的研究,这需要对投资组合的未来价值进行建模。在本文中,继[渭南E(2017),韩(2017)]最近的工作之后,我们应用深度学习来解决这个问题。通过神经网络对未来值进行参数化,然后通过优化确定参数。本文研究了两种具体产品:百慕大掉期期权和按市价交叉货币掉期。我们获得了他们预期的正/负风险敞口,并进一步研究了由此产生的未来价值函数形式。这种方法为XVA建模提供了一个新的框架,同时也为美国蒙特卡罗等其他方法带来了新的启示。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->