《Application of Stochastic Mesh Method to Efficient Approximation of CVA》
---
作者:
Yusuke Morimoto
---
最新提交年份:
2015
---
英文摘要:
In this paper, the author considers the numerical computation of CVA for large systems by Mote Carlo methods. He introduces two types of stochastic mesh methods for the computations of CVA. In the first method, stochastic mesh method is used to obtain the future value of the derivative contracts. In the second method, stochastic mesh method is used only to judge whether future value of the derivative contracts is positive or not. He discusses the rate of convergence to the real CVA value of these methods.
---
中文摘要:
本文考虑用蒙特卡罗方法对大系统的CVA进行数值计算。他介绍了两种用于计算CVA的随机网格方法。在第一种方法中,使用随机网格方法来获得衍生合约的未来价值。在第二种方法中,随机网格法仅用于判断衍生合约的未来价值是否为正。他讨论了这些方法收敛到实际CVA值的速度。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->