|
具有未知数量变化点的变化点检测问题包括解决以下离散优化问题MintV(T)+pen(T)(46),其中pen(T)是分段T复杂性的适当度量。Truong[47]还提出了几种惩罚函数。在本文中,我们使用的线性惩罚是变化点数量的线性函数,这意味着:pen(T)=β| T |(47),其中β>0是平滑参数,| T |是T的基数。在本文中,我们使用Truong[48]提供的Python Scientific库Breatures来划分R.5模型参数估计。在本文中,我们使用EM算法来估计参数。为简单起见,设K1,1=K1,2=·················································································································································-1+1,(49)^n(t)en=n+············+nt,(50)其中t=1,····,n。因为可观测变量是{rs}ns=1,所以完整变量是(rs,ηs,1,1,·····,ηs,1,K,ηs,2,K,··········,ηs,K,1,·······,n.(51)然后,给定一个子集Rt,完全变量isP(r,η|θ)=^n(t)enYs=^n(t)stP(rs,ηs,1,1,···,ηs,1,K,··,ηs,K,1,··,ηs,K,K |θ)(52)=^n(t)enYs=^n(t)stKYj=1KYi=1[β(t)jαj,iφ(rs,θj,i)]s,j,i(53)=KYj=1β(t)jPKi=1P^n(t)ens=^n(t)stηs,j,iKYi=1αj,iP^n(t)ens=^n(t)stηs,j,i^n(t)enYs=^n(t)st[φ(rs |θj,i)]s,j,i.(54)表示ntj,i:=^n(t)enXs=^n(t)stηs,j,i,i j、,·:=KXi=1^n(t)enXs=^n(t)stηs,j,i(55)那么我们有KXi=1ntj,i=ntj,·,KXj=1ntj,·=ntandNXt=1nt=n.(56)因此,P(r,η|θ)=KYj=1β(t)jntj,·KYi=1αj,intj,i^n(t)enYs=^n(t)st[φ(rs |θj,i)]s,j,i.(57)对于整个序列r,完全变量isP(r,η|θ)=NYt=1KYj=1β(t)jntj,·KYi=1αj,intj,i^n(t)enYs=^n(t)st[φ(rs |θj,i)]ηs,j,i的似然函数。
|