楼主: zhj0351
617 0

[新手尝试] Sensitivity Analysis in Multiple Imputation for Missing Data [推广有奖]

  • 0关注
  • 0粉丝

大专生

68%

还不是VIP/贵宾

-

威望
0
论坛币
162 个
通用积分
5.1074
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2283 点
帖子
11
精华
0
在线时间
85 小时
注册时间
2020-3-21
最后登录
2024-9-5

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Sensitivity Analysis in Multiple Imputation for Missing Data  


ABSTRACT
Multiple imputation, a popular strategy for dealing with missing values, usually assumes that the data are
missing at random (MAR). That is, for a variable Y, the probability that an observation is missing depends
only on the observed values of other variables, not on the unobserved values of Y. It is important to examine
the sensitivity of inferences to departures from the MAR assumption, because this assumption cannot be
verified using the data.
The pattern-mixture model approach to sensitivity analysis models the distribution of a response as the
mixture of a distribution of the observed responses and a distribution of the missing responses. Missing
values can then be imputed under a plausible scenario for which the missing data are missing not at random
(MNAR). If this scenario leads to a conclusion different from that of inference under MAR, then the MAR
assumption is questionable.
This paper reviews the concepts of multiple imputation and explains how you can apply the pattern-mixture
model approach in the MI procedure by using the MNAR statement, which is new in SAS/STAT® 13.1.
You can specify a subset of the observations to derive the imputation model, which is used for pattern
imputation based on control groups in clinical trials. You can also adjust imputed values by using specified
shift and scale parameters for a set of selected observations, which are used for sensitivity analysis with a
tipping-point approach.
Sensitivity Analysis in Multiple Imputation for Missing Data.pdf (825.19 KB, 需要: 10 个论坛币)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Sensitivity Imputation Multiple Analysis missing SAS数据分析方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 14:51