2024北京师范大学数学分析
证明 由已知\[\begin{align*}\because c
&\le -y\frac{\partial f}{\partial x}+x\frac{\partial f}{\partial y}+b\frac{\partial f}{\partial z} \\
&=-\frac{b\sin t}{\frac{dx}{dt}}\frac{\partial f}{\partial t}+\frac{b\cos t}{\frac{dy}{dt}}\frac{\partial f}{\partial t}+\frac{b}{\frac{dz}{dt}}\frac{\partial f}{\partial t} \\
&=-\frac{b\sin t}{-b\sin t}\frac{\mathrm{d}f}{\mathrm{d}t}+\frac{b\cos t}{b\cos t}\frac{\mathrm{d}f}{\mathrm{d}t}+\frac{b}{b}\frac{\mathrm{d}f}{\mathrm{d}t} \\
&=3\frac{\mathrm{d}f}{\mathrm{d}t}.
\end{align*}\]\[\therefore f(x,y,z)=f(t)\geqslant 3ct.\]\[\lim_{t\to+\infty}f(t)=+\infty ,\]即\[f(x,y,z)\rightarrow +\infty.(t\to+\infty)\]