Random-effects GLS regression Number of obs = 18157
Group variable: id Number of groups = 8439
R-sq: within = 0.3700 Obs per group: min = 1
between = 0.3572 avg = 2.2
overall = 0.3893 max = 7
Random effects u_i ~ Gaussian Wald chi2(17) = 10661.42
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
lwage Coef. Std. Err. z P>z [95% Conf. Interval]
eduformal .0286573 .0022356 12.82 0.000 .0242755 .033039
age .0526459 .002953 17.83 0.000 .0468581 .0584336
agesq -.0006459 .0000362 -17.85 0.000 -.0007169 -.000575
moccupation -.0580372 .0040806 -14.22 0.000 -.0660351 -.0500393
status -.008589 .0072163 -1.19 0.234 -.0227327 .0055546
workunit -.0177764 .00405 -4.39 0.000 -.0257143 -.0098384
dayswork .0927779 .0054303 17.09 0.000 .0821347 .1034211
hourwork .0481088 .0032251 14.92 0.000 .0417876 .0544299
gender .2139392 .0148381 14.42 0.000 .184857 .2430214
urban .1869902 .0152019 12.30 0.000 .1571951 .2167853
east .1352672 .0147803 9.15 0.000 .1062984 .164236
yeard2 .0773081 .013818 5.59 0.000 .0502252 .1043909
yeard3 .2403913 .0146795 16.38 0.000 .2116199 .2691627
yeard4 .6218085 .016771 37.08 0.000 .5889379 .6546792
yeard5 .9267589 .0176702 52.45 0.000 .8921259 .9613919
yeard6 1.17769 .0211747 55.62 0.000 1.136189 1.219192
yeard7 1.174082 .0206957 56.73 0.000 1.133519 1.214645
_cons 3.290173 .0796948 41.28 0.000 3.133974 3.446372
sigma_u .5285032
sigma_e .5100321
rho .5177801 (fraction of variance due to u_i)
Fixed-effects (within) regression Number of obs = 18157
Group variable: id Number of groups = 8439
R-sq: within = 0.3839 Obs per group: min = 1
between = 0.0210 avg = 2.2
overall = 0.0015 max = 7
F(14,9704) = 431.96
corr(u_i, Xb) = -0.9683 Prob > F = 0.0000
lwage Coef. Std. Err. t P>t [95% Conf. Interval]
eduformal .0250096 .0056228 4.45 0.000 .0139877 .0360314
age .320567 .0743815 4.31 0.000 .1747636 .4663703
agesq -.0007383 .0000671 -11.01 0.000 -.0008697 -.0006068
moccupation -.0321561 .0051211 -6.28 0.000 -.0421946 -.0221176
status -.0539666 .0098433 -5.48 0.000 -.0732615 -.0346717
workunit -.008508 .0055502 -1.53 0.125 -.0193876 .0023716
dayswork .0706113 .0071564 9.87 0.000 .0565833 .0846394
hourwork .0213958 .004267 5.01 0.000 .0130316 .0297601
gender (dropped)
urban (dropped)
east (dropped)
yeard1 (dropped)
yeard2 -.3862887 .1431279 -2.70 0.007 -.6668492 -.1057282
yeard3 -.7506252 .2914588 -2.58 0.010 -1.321945 -.1793052
yeard4 -1.436529 .5901803 -2.43 0.015 -2.593406 -.2796531
yeard5 -1.903499 .811925 -2.34 0.019 -3.495042 -.3119573
yeard6 -2.633917 1.107429 -2.38 0.017 -4.804709 -.463125
yeard7 -3.036855 1.253868 -2.42 0.015 -5.494698 -.5790128
_cons -4.107465 2.250404 -1.83 0.068 -8.518727 .3037964
sigma_u 3.5754873
sigma_e .5100321
rho .98005766 (fraction of variance due to u_i)
F test that all u_i=0: F(8438, 9704) = 2.64 Prob > F = 0.0000
恰相反,且显著不等于0,怎么回事呢?谢谢!!
|