看最下面,帮助的介绍
Title
[R] ivtobit -- Tobit model with continuous endogenous regressors
Syntax
Maximum likelihood estimator
ivtobit depvar [varlist1] (varlist2 = varlist_iv) [if] [in] [weight], ll[(#)] ul[(#)] [mle_options]
Two-step estimator
ivtobit depvar [varlist1] (varlist2 = varlist_iv) [if] [in] [weight], twostep ll[(#)] ul[(#)] [tse_options]
mle_options Description
-------------------------------------------------------------------------------------------------------------------------
Model
* ll[(#)] lower limit for left censoring
* ul[(#)] upper limit for right censoring
mle use conditional maximum-likelihood estimator; the default
constraints(constraints) apply specified linear constraints
SE/Robust
vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap, or jackknife
Reporting
level(#) set confidence level; default is level(95)
first report first-stage estimates
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of omitted variables and base
and empty cells
Maximization
maximize_options control the maximization process
coeflegend display legend instead of statistics
-------------------------------------------------------------------------------------------------------------------------
* You must specify at least one of ll[(#)] and ul[(#)].
tse_options Description
-------------------------------------------------------------------------------------------------------------------------
Model
* twostep use Newey's two-step estimator; the default is mle
* ll[(#)] lower limit for left censoring
* ul[(#)] upper limit for right censoring
SE/Robust
vce(vcetype) vcetype may be twostep, bootstrap, or jackknife
Reporting
level(#) set confidence level; default is level(95)
first report first-stage estimates
display_options control column formats, row spacing, line width, and display of omitted variables and base
and empty cells
coeflegend display legend instead of statistics
-------------------------------------------------------------------------------------------------------------------------
* twostep is required. You must specify at least one of ll[(#)] and ul[(#)].
varlist1 and varlist_iv may contain factor variables; see fvvarlist.
depvar, varlist1, varlist2, and varlist_iv may contain time-series operators; see tsvarlist.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see prefix.
Weights are not allowed with the bootstrap prefix.
vce(), first, twostep, and weights are not allowed with the svy prefix.
fweights, iweights, and pweights are allowed with the maximum likelihood estimator. fweights are allowed with Newey's
two-step estimator. See weight.
coeflegend does not appear in the dialog box.
See [R] ivtobit postestimation for features available after estimation.
Menu
Statistics > Endogenous covariates > Tobit model with endogenous covariates
Description
ivtobit fits tobit models where one or more of the regressors is endogenously determined. By default, ivtobit uses
maximum likelihood estimation. Alternatively, Newey's (1987) minimum chi-squared estimator can be invoked with the
twostep option. Both estimators assume that the endogenous regressors are continuous and so are not appropriate for use
with discrete endogenous regressors. See [R] ivprobit for probit estimation with endogenous regressors and [R] tobit for
tobit estimation when the model contains no endogenous regressors.
|