楼主: 黑目shadow
18495 10

[学科前沿] 关于伊藤过程和几何布朗运动的疑问 [推广有奖]

  • 21关注
  • 8粉丝

教授

30%

还不是VIP/贵宾

-

威望
1
论坛币
2801 个
通用积分
4.4016
学术水平
8 点
热心指数
29 点
信用等级
7 点
经验
74682 点
帖子
612
精华
0
在线时间
1209 小时
注册时间
2011-9-4
最后登录
2023-4-30

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
hull的《期权、期货及其他衍生产品(7e)》一书中提到两个很类似的描述变化量的随机过程:
伊藤过程,dx=a(x,t)dt+b(x,t)dz              (1),
几何布朗运动的离散形式,dS/S=udt+gdz                     (2),
其中dz是维纳过程,a(x,t)是预期漂移率,b(x,t)是方差率,u是预期收益率,g是股票价格波动率;
由第二个式子:dS=Sudt+Sgdz                                (3);
(3)与(1)对比有:
a(x,t)=Su,这与作者定义的期望漂移等于股价乘以期望收益率相符;
但b(x,t)=Sg就无法理解了,左边是方差,右边是股价乘以标准差,这怎么会相等呢?望高手解答下,谢谢了!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:布朗运动 股票价格波动 期望收益率 hull 股票价格 伊藤 疑问

回帖推荐

Chemist_MZ 发表于7楼  查看完整内容

Very nice observation. I don't know whether I have caught your point, but I try to explain it. I may not answer your question directly. Instead, I try to clarify some concepts so that you may have a clear picture and solve your puzzle yourself. 1. You mentioned that you try to simulate the distribution of ΔS/S in a very short time interval. However, you cannot do it directly. Since we kno ...

黑目shadow 发表于6楼  查看完整内容

我注意到中译本的书将广义维纳过程中的b^2称为变量的“方差率”,而GBM中的g称为股价的波动率,是不是说前者本身考虑了股价的影响(比如已经乘以了股价),而后者只是变化的比率(即只是一个百分数,未乘以股价)?这样好像就解释的通了。

本帖被以下文库推荐

即使没有人为你鼓掌,也要优雅的谢幕,感谢自己的认真付出。
沙发
Chemist_MZ 在职认证  发表于 2012-10-24 02:42:45 |只看作者 |坛友微信交流群
Ito process is a more general process. Hull does not say that the two process are the same.

In particular, Geometric Brownian Motion is a specific form of Ito process. If you let X=S, you will find that, uS is a(Xt,t),sigmaS is b(Xt,t).  a(Xt,t) and b(Xt,t) can be any adapted process, whatever you want. If you plug uS, and sigmaS into it you get the GBM.

I don't think Hull give some meaning of b(Xt,t). So I don't know where you see that b standards for variance. If you really want some answer, I will say that b^2 is used to describe the variance term, not b.

已有 1 人评分经验 收起 理由
chengzhifu2013 + 40 精彩帖子

总评分: 经验 + 40   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

使用道具

藤椅
xuruilong100 发表于 2012-10-24 11:44:12 |只看作者 |坛友微信交流群
"g是股票价格波动率"
我觉得g应该理解为收益率的瞬时波动率
已有 1 人评分经验 论坛币 学术水平 热心指数 收起 理由
chengzhifu2013 + 24 + 24 + 5 + 4 个人认为g是单位股价上的标准差率

总评分: 经验 + 24  论坛币 + 24  学术水平 + 5  热心指数 + 4   查看全部评分

使用道具

板凳
yanghuibit 发表于 2012-10-24 21:17:48 |只看作者 |坛友微信交流群
为什么你会认为左边是方差呢?

使用道具

报纸
黑目shadow 发表于 2012-10-24 23:11:38 |只看作者 |坛友微信交流群
Chemist_MZ 发表于 2012-10-24 02:42
Ito process is a more general process. Hull does not say that the two process are the same.

In pa ...
不好意思是我打错了,b^2是方差率。
几何布朗运动和伊藤过程的确是不同的,只是我之前用这两个模型预测很短的时间内股价增量分布时得到相似但不同的解,所以感到很疑惑。具体来说:
由GBM:令S为现在股价,ΔS/S服从期望值为uΔt,方差为(g^2)*Δt的正态分布。即ΔS服从期望值为SuΔt,方差为((Sg)^2)*Δt的正态分布,注意到该方差是受S影响的;
由伊藤过程:令x为股价,则Δx服从期望为a(x,t)Δt,方差为(b^2)*Δt的正态分布,当时我认为这里的方差不受S影响,与GBM的不一致所以挺困惑的,不过经您提醒,伊藤过程的b是x和t的函数,所以该方差还是受股价x的影响的,
但更极端的我想,如果考虑a和b为常数的情形,即由伊藤过程改为广义维纳过程,那么此时期望为aΔt,a=Su,这与作者定义的期望漂移等于股价乘以期望收益率相符,但方差为(b^2)*Δt,就不受股价影响了(如7版的例12-2),此时就和GBM不同了。不知道我不是把概念搞混了还是有其他的解释?谢谢了!
即使没有人为你鼓掌,也要优雅的谢幕,感谢自己的认真付出。

使用道具

地板
黑目shadow 发表于 2012-10-24 23:19:34 |只看作者 |坛友微信交流群
Chemist_MZ 发表于 2012-10-24 02:42
Ito process is a more general process. Hull does not say that the two process are the same.

In pa ...
我注意到中译本的书将广义维纳过程中的b^2称为变量的“方差率”,而GBM中的g称为股价的波动率,是不是说前者本身考虑了股价的影响(比如已经乘以了股价),而后者只是变化的比率(即只是一个百分数,未乘以股价)?这样好像就解释的通了。
即使没有人为你鼓掌,也要优雅的谢幕,感谢自己的认真付出。

使用道具

7
Chemist_MZ 在职认证  发表于 2012-10-25 06:33:35 |只看作者 |坛友微信交流群
黑目shadow 发表于 2012-10-24 23:19
我注意到中译本的书将广义维纳过程中的b^2称为变量的“方差率”,而GBM中的g称为股价的波动率,是不是说前 ...
Very nice observation. I don't know whether I have caught your point, but I try to explain it.

I may not answer your question directly. Instead, I try to clarify some concepts so that you may have a clear picture and solve your puzzle yourself.

1. You mentioned that you try to simulate the distribution of ΔS/S in a very short time interval. However, you cannot do it directly. Since we know that Brownian motion is a kind of "rough" function whose quadratic variation is not zero. If you simulate with random number directly, you actually ignore its quadratic term. You can solve dS=uSdt+gSdW, with some elementary stochastic calculus knowledge. And the solution is actually lnSt=lnS0+(u-1/2*g^2)t+g*Wt which means
ΔS/S=dlnS=(u-1/2*g^2)dt+g*dW. However, if you think ΔS/S~N(uΔt,(g^2)*Δt), this only holds when time interval is very large which means the stock price does not move continuously. Since we know that the Brownian motion is a continuous function, there may cause some problems when you simulate the stock price discretely. The fundamental difference is its mean.

2. Why we call dS=uSdt+gSdW a GBM, because the solution is in exponential form: that is St=S0*exp(...), which means that the volatility is the volatility of stock return not the stock price itself and the stock price is log normally distributed (such process prevent the stock price take a negative value)

3.If you apply the BM with a drift(generalized wiener process) to model the stock process
dS=adt+bdW, which means the stock price is normally distributed, you can integral it directly and find that S=at+bW. This is an early way to modeling stock process. You mentioned that "a" is a constant, but later you say a=Su. There is an obvious paradox here. S is stochastic therefore "a" is surly not a constant, which is contradictory to your previous assumption.

4. There are many ways to modeling stock processes, you can not always dig an intuitive meaning on each process. We just know that what parameters are responsible for mean and what are for variance. We don't say they are variance or they are mean. Just like we call b a variance or a volatility term, does not mean itself is variance or volatility. Or whether it is the volatility of the price or return. We just know that if b is bigger, the stock price will fluctuate more and so does the return.

If you want more detail or more specific question, add my qq.
已有 2 人评分经验 论坛币 收起 理由
chengzhifu2013 + 20 精彩帖子
见路不走 + 5 + 5 热心帮助其他会员

总评分: 经验 + 25  论坛币 + 5   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

使用道具

8
gossip888 发表于 2016-10-13 23:28:46 |只看作者 |坛友微信交流群
感谢。。。。。。。。。。。。。

使用道具

9
yuan122600 发表于 2018-10-9 07:44:32 |只看作者 |坛友微信交流群
学习了

使用道具

10
roinke 在职认证  发表于 2018-10-9 16:33:21 |只看作者 |坛友微信交流群
sg为dz(服从几何布朗运动,均值为0,方差为1)的系数,由于每个dt是相互独立的,所以可以求得ds的方差为dz的sg倍
学习是最长

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-22 07:20