Wicher Bergsma
recommend to download for one of them to save money since SAS code is not important this submission cannot be altered due to limitation of the uploading system
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Marginal Models for CategoricalData . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Historical and Comparable Approaches . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Coefficients for the Comparison ofMarginalDistributions . . . . . . . . 9
1.3.1 MeasuringDifferences in Location . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 MeasuringDifferences in Dispersion . . . . . . . . . . . . . . . . . . . . 13
1.3.3 MeasuringAssociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 MeasuringAgreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Loglinear Marginal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Ordinary LoglinearModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 Basic Concepts and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 ModelingAssociationAmong ThreeVariables. . . . . . . . . . . . 30
2.2 Applications of LoglinearMarginalModels . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Research Questions and Designs Requiring Marginal Models 34
2.2.2 ComparingOne Variable Distributions . . . . . . . . . . . . . . . . . . 36
2.2.3 More ComplexDesigns and Research Questions . . . . . . . . . . 42
2.3 Maximum Likelihood Inference for Loglinear Marginal Models . . . 51
2.3.1 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.2 Specifying Loglinear Marginal Models by Constraining
the Cell Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3 Simultaneous Modeling of Joint and Marginal
Distributions: Redundancy, Incompatibility and Other Issues 61
2.3.4 ***Maximum Likelihood Estimates of Constrained Cell
Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.5 ***A Numerical Algorithm for ML Estimation . . . . . . . . . . . 67
2.3.6 ***Efficient Computation of ML Estimates
for Simultaneous Joint andMarginalModels . . . . . . . . . . . . . 70
2.3.7 ***Large Sample Distribution of ML estimates . . . . . . . . . . . 71
2.3.8 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
ix
x Contents
3 NonloglinearMarginal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1 Comparing Item Characteristics for Different Measurement Levels . 75
3.1.1 Interval Level ofMeasurement . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.2 Ordinal Level ofMeasurement . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.1.3 Nominal Level ofMeasurement . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2 ComparingAssociations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.1 Generalized exp-log Specification of Nonloglinear
MarginalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.2 Compatibility and Redundancy of Restrictions . . . . . . . . . . . . 93
3.3.3 Homogeneous Specification of Coefficients . . . . . . . . . . . . . . 93
3.3.4 ***Algorithm for Maximum Likelihood Estimation . . . . . . . 94
3.3.5 ***Asymptotic Distribution of ML Estimates . . . . . . . . . . . . 95
4 Marginal Analysis of Longitudinal Data . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1 TrendData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 Comparing Net Changes in More Than One Characteristic . . 99
4.1.2 Simultaneous Tests for Restrictions on Association and Net
Change:Modeling Joint andMarginal Tables . . . . . . . . . . . . . 102
4.2 Panel Data: Investigating Net Changes in One Characteristic . . . . . . 104
4.2.1 Overall Net Changes; Cumulative Proportions; Growth
Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Subgroup Comparisons of Net Changes . . . . . . . . . . . . . . . . . 115
4.2.3 Changes in Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3 Gross Changes in One Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.1 Comparing Turnover Tables for Different Periods . . . . . . . . . 120
4.3.2 Comparing SummaryMeasures of Gross Change . . . . . . . . . 126
4.3.3 Extensions; Net Plus Gross Changes; Multiway Turnover
Tables; Subgroup Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . 129
4.4 Net and Gross Changes in Two Related Characteristics . . . . . . . . . . . 130
4.4.1 Net Changes in Two Characteristics . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Changes in Association Between Two Changing
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.4.3 Gross Changes in Two Characteristics . . . . . . . . . . . . . . . . . . . 140
4.4.4 Combining Hypotheses about Net and Gross Changes . . . . . 147
4.5 Minimally Specified Models for Comparing Tables
with OverlappingMarginals;Detection of ProblematicModels . . . . 148
5 Causal Analyses: Structural Equation Models
and (Quasi-)Experimental Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.1 SEMs - Structural EquationModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1.1 SEMs for CategoricalData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1.2 An Example:Women’s Role . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.1.3 MarginalModeling and Categorical SEM. . . . . . . . . . . . . . . . 165
5.2 Analysis of (Quasi-)ExperimentalData . . . . . . . . . . . . . . . . . . . . . . . . 172
Contents xi
5.2.1 The One-group Pretest-Posttest Design . . . . . . . . . . . . . . . . . . 173
5.2.2 The NonequivalentControl GroupDesign . . . . . . . . . . . . . . . 175
5.2.3 A Truly ExperimentalDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6 Marginal Modeling with Latent Variables . . . . . . . . . . . . . . . . . . . . . . . . 191
6.1 Latent ClassModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 LatentMarginal Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3 Loglinear and Nonloglinear Latent Class Models: Equal Reliabilities 198
6.3.1 Restrictions on Conditional Response Probabilities . . . . . . . . 199
6.3.2 Restrictions on Odds Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.3.3 Restrictions on PercentageDifferences . . . . . . . . . . . . . . . . . . 204
6.3.4 Restrictions on Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.4 Marginal causal analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.4.1 SEMs with latentmarginal homogeneity . . . . . . . . . . . . . . . . . 207
6.4.2 Latent Variable SEMs for Clustered Data . . . . . . . . . . . . . . . . 209
6.5 Estimation of Marginal Models with Latent Variables
Using the EMAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.5.1 Basic EMAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.5.2 ***General EM for MarginalModels . . . . . . . . . . . . . . . . . . . 215
6.5.3 ***Marginal Restrictions in Combination with a Loglinear
Model for the Complete Table . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.5.4 ***Speeding up of the EM Algorithm for Separable Models 218
6.5.5 ***Asymptotic Distribution of ML Estimates . . . . . . . . . . . . 219
7 Conclusions, Extensions, and Applications . . . . . . . . . . . . . . . . . . . . . . . 223
7.1 MarginalModels for Continuous Variables . . . . . . . . . . . . . . . . . . . . . 224
7.1.1 Changes inMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.1.2 Changes in Correlation and Regression Coefficients . . . . . . . 226
7.2 Alternative Procedures andModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.2.1 Alternative Estimation Procedures:WLS and GEE . . . . . . . . 228
7.2.2 Modeling Dependent Observations: Marginal, Random
Effects, and Fixed EffectsModels . . . . . . . . . . . . . . . . . . . . . . 230
7.3 Specific Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.3.1 Multiple Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
7.3.2 CategoricalDyadic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.3.3 Mokken Scale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.4 Problems and FutureDevelopments . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.5 Software,Generalized exp-log Routines, andWebsite . . . . . . . . . . . . 244
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263