大家知道,在一般的世界中,运动有两类形式:一类是连续轨道运动;另一类则是不连续轨道运动,也就是常说的带跳的过程。我们撇开数学里面很精细的东西,用很朴素的观点来看,这两种运动都是很自然的。有的时候,把一种运动看成是连续的还是带跳的,要依赖“观测”条件。比如经典物理,我们常常把运动处理成连续轨道运动;但到了微观物理,基于观测的限制,理论上时常把运动处理成离散带跳的运动。当然,这倒不是说微观运动就一定要处理成离散的,宏观运动就一定是连续的。很多时候,要看问题本身的特点。
在概率论中,研究的最多的有两个基本模型。一个是大家熟悉的布朗运动,它是典型的连续过程,只是说在随机因素的干扰下,它的轨道看起来并不光滑,而是有些杂乱无章的,但它的轨道毕竟还是连续的。基于布朗运动,概率学家发展了一套完善的理论,我们叫它随机分析。另一个过程叫做泊松过程,我想知道它的朋友也很多。一般,我们介绍泊松过程都是从数数讲起。比如,我们说,医院的接诊台接待的患者人数,一般会假设它服从一个泊松过程。这种计数过程当然是“带跳”的,跳一步,就相当于计数的时候加一。所以,建议想学随机过程的朋友,从轨道层面对随机过程做适当的区别对待,并且建议从布朗运动和泊松过程起步。然后逐步学习更加深入的随机过程。
从研究来看,基于布朗运动的随机分析理论是较为完善的。相应地,带跳的过程相对难研究一些。举个不恰当的例子,就比如大家研究常微分方程会觉得容易一些,而研究差分方程就要吃力一些。道理是类似的。(当然不要误解说随机分析就容易做)因此人们迫切希望知道关于带跳随机过程更多的信息。这里大家不要小看了“跳”,数学中刻画的跳可以是非常复杂的跳跃,甚至都无法给出直观的形象。在带跳的过程中,一类叫做Levy过程的研究是最为充分的。Levy过程是很大一类过程,它不仅包括了很多带跳的过程(如泊松过程),也包括布朗运动,只是现在概率学家更多的是在借助这套理论研究带跳的Levy过程。我想,熟悉金融工程的朋友都接触过Levy过程,它的应用还是非常广泛的。
总结来看,我们将随机过程按照轨道进行分类,是基于非常朴素的观测。从研究手法上说,这样的分类也是有道理的。还是想重申的是,将一个运动当作何种轨道进行处理,要看研究对象而定,而且有时候是一件主观的事情。比如,在金融数学当中,研究资产定价的多是基于布朗运动的随机分析;而保险行业则更多的采用带跳的过程的随机分析。
近年来,带跳Levy过程理论作为现代概率论的重要一支得到了迅速的发展,在基础数学、统计、经济、金融、保险、运筹学、物理、工程等领域的应用广泛。这里我们指的是带跳的Levy过程,纯连续的不在本清单考虑之列。Levy过程也有很多别名(包括几乎类似的过程),可加过程,独立增量过程,无穷可分过程,它的相关的分布(带跳的)有,Poisson过程,复合Poisson过程等。下面的书籍包括专门讲带跳Levy过程的专著(专著前面标注*,教材前面标注**)、包含带跳Levy(至少一章或具有历史意义)过程及其相关统计分布的书籍。
理论
Lévy,Théorie de l'addition des variables aléatoires,1937 ,1954 2ed(被引用次数:1821 Lévy总结了自己发现的“可加过程”).
Khinchin, Limit Laws for Sums of Independent Random Variables. 1938 (in Russian)
Doob,Stochastic Processes,1953(被引用次数:8948)
格涅坚科,概率论教程(苏),1954.
Gnedenko, Kolmogorov A N, Chung , et al. Limit distributions for sums of independent random variables.1956,(被引用次数:2904)
Dugué,Arithmétique des lois de probabilités,1957(被引用次数:26)
Itō,Essentials of Stochastic Processes,1957 (被引用次数:20 )
Feller,An Introduction to Probability Theory and Its Applications, Volume 1,2 1958(被引用次数:34147有一章讲复合Poisson分布,有一章讲无穷可分分布),
伊藤清,概率论,1958 (有章讲可加过程)
Parzen, E. Stochastic Processes,1962(被引用次数:2446 Poisson过程和复合Posson过程)
Lévy, Processus stochastiques et mouvement brownien, 2ed., 1965 (被引用次数:26 有一章讲无穷可分分布,纪念de Finetti和Kolmogoroff)
Lukacs E,Characteristic functions 2ed, 1970(被引用次数:1661)
Petrov. Sums of Independent Random Variables,1970,(被引用次数:2484)
Ibragimov,Independent and Stationary Sequences of Random Variables,1971 (被引用次数:1931)
*Steutel ,Preservation of infinite divisibility under mixing and related topics,1970 (被引用次数:148)
Guichardet,Symmetric Hilbert Spaces and Related Topics: Infinitely Divisible Positive Definite Functions, Continuous Products and Tensor Products, Gaussian and Poissonian Stochastic Processes,1972 (被引用次数:347 无穷可分的函数)
*Matthes,Infinitely Divisible Point Processes ,1974 (被引用次数:482 German)
Cuppens R. Decomposition of multivariate probabilities,1975(多元随机变量的分解被引用次数:63)
Grandell,Doubly Stochastic Poisson Processes,1976. (被引用次数:284双随机过程)
Linnik J V, Ostrovskii I V. Decomposition of random variables and vectors,1977(被引用次数:238 一元随机变量的分解)
*Van Harn. Classifying infinitely divisible distributions by functional equations.1978 (被引用次数:43)
Lukacs,Developments in Characteristic Function Theory,1983(被引用次数:72)
戴永隆,随机点过程.1984(被引用次数:5)
Zolotarev, One-dimensional stable distributions. 1986 被引用次数:1240
Kallenberg; Random Measures ,4rd ed.1986(被引用次数:1226)
朱成熹,随机极限引论,1987 (被引用次数:5)
Zaitsev. Uniform limit Theorems for Sums of Independent Random Variables,1988,(被引用次数:79)
陆传荣,概率论极限理论引论,1989.(被引用次数:53)
*Hansen,Monotonicity properties of infinitely divisible distributions,1988
Bondesson. Generalized gamma convolutions and related classes of distributions and densities.1992 (被引用次数:241).
邓永录,随机点过程及其应用,1992(被引用次数:117)
*Kingman, Poisson Processes 1993(被引用次数:52专门讲Poisson过程的专著)
Janos Galambos,Advanced Probability Theory,Second Edition 1995(被引用次数:101)
Jensen,Saddlepoint Approximations,1995 (有一章讲复合Poisson的鞍点逼近)
何声武,半鞅与随机分析,1995(被引用次数:2 太难了!)
胡迪鹤,随机分形引论,1995 (Levy过程轨道的分形性质 被引用次数:25)
Last,Marked Point Processes on the Real Line The Dynamic Approach,1995(被引用次数:253)
Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables. 1995(被引用次数:26)
**Bertoin,Lévy processes 1996(被引用次数:2150 有配套习题)
Küchler,Exponential Families of Stochastic Processes,1997(被引用次数:175)
Zolotarev,Modern Theory of Summation of Random Variables,1997 (被引用次数:236)
Fristedt. A modern approach to probability theory. 1997.(被引用次数:298)
Kutoyants,Statistical Inference for Spatial Poisson Processes 1998,(Lecture Notes in Statistics 被引用次数:141)
**Sato,Levy Processes And Infinitely Divisible Distributions 1999( 被引用次数:3234 书后有习题解答)
Franz,Stochastic Processes and Operator Calculus on Quantum Groups,1999(被引用次数:26 )
林正炎,概率极限理论基础,1999.(被引用次数:130)
Uchaikin, Vladimir V.Chance and Stability: Stable Distributions and their applications. 1999 被引用次数:434
Yor,Exponential Functionals of Brownian Motion and Related Processes,2001 (被引用次数:207 Exponential Functionals of Certain Lévy Processes )
Meerschaert ,Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice,2001
Shanbhag,Stochastic processes, theory and methods,2001(被引用次数:11)
Hazod,Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups,2001(被引用次数:65)
Kallenberg,Foundations of Modern Probability ,2002 (被引用次数:2178(高等概率论的字典)
Foata,Processus stochastiques : Processus de poisson, chaînes de Markov et martingales,2002 (被引用次数:31)
Moller ,Statistical Inference and Simulation for Spatial Point Processes 2003(被引用次数:518 空间Poisson过程)
*Steutel ,Van Harn. Infinite Divisibility Of Probability Distributions On The Real Line 2003(被引用次数:218分非负实数上,实数,非负整数为支撑集合)
Nolan, John. Stable distributions: models for heavy-tailed data. 2003. 被引用次数:466
*Kyosi Ito ,Stochastic Processes: Lectures Given at Aarhus University,2004被引用次数:296全书仅3章,第1,2章讲可加过程,书后有习题解答),
张波,张景肖,应用随机过程,2004(被引用次数:96,最后一章讲Levy过程与Poisson点过程的随机积分简介)
Benes, Stochastic Geometry:Selected Topics ,2004 (被引用次数:48 Poisson点过程,Poisson随机测度)
Bobrowski,Functional Analysis For Probability And Stochastic Processes 2005 (被引用次数:67 算子半群方法)
Applebaum,Quantum Independent Increment Processes I From Classical Probability to Quantum Stochastic Calculus,2005(被引用次数:10 量子Levy过程)
OE Barndorff-Nielsen, Quantum Independent Increment Processes II: Structure of Quantum Lévy Processes, Classical Probability, and Physics,2005 (被引用次数:11 量子Levy过程)
吴群英,混合序列的概率极限理论,2006(被引用次数:38)
*Liao,Levy Processes In Lie Groups 2007(被引用次数:61 我擦!竟然出现李群)
Peszat,Stochastic partial differential equations with Lévy noise: An evolution equation approach 2007 被引用次数:205
Daley, An Introduction to the Theory of Point Processes, 2007 (被引用次数:3026)
*Doney,Fluctuation Theory for Lévy Processes 2007 (被引用次数:72)
胡迪鹤,高等概率论及其应用,2008(第十章Lévy过程和无穷可分律)
Klenke,Probability Theory - A Comprehensive Course ,2008 (被引用次数:115)
**Applebaum Levy processes and stochastic calculus 2009(被引用次数:967 )
郭柏灵,随机无穷维动力系统,2009,(被引用次数:1 Levy过程,Levy噪声驱动的微分方程)
Privault ,Stochastic Analysis in Discrete and Continuous Settings: With Normal Martingales,2009 (Lecture Notes in Mathematics) (被引用次数:45 标题中离散的就是Poisson随机测度,Poisson空间)
Barndorff-Nielsen ,Shiryaev ,Change of Time and Change of Measure,2010( 被引用次数:28)
Duquesne,Lévy Matters I : Recent Progress in Theory and Applications: Foundations, Trees and Numerical Issues in Finance,2010.
Daniel,Probability Theory An Analytic View, 2 edition 2010(被引用次数:503 第3,4章有习题)
Jacobs,Stochastic Processes for Physicists,2010 (被引用次数:14 有2章介绍,偏物理)
Rogosin,The Legacy of A.Ya. Khintchine's Work in Probability Theory, 2011
Holden, Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach.2010 (有一章讲Levy过程驱动的随机偏微分方程被引用次数:584).
Bass,Stochastic Processes,2011
Bertoin, J, Lévy Processes at Saint-Flour,2012
Meerschaert ,Stochastic Models for Fractional Calculus,2012 (被引用次数:49 )
Osswald,Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion,2012 (被引用次数:3)
Grigelionis,Student's t-Distribution and Related Stochastic Processes,2013
*Yasushi,Stochastic Calculus of Variations for Jump Processes,2013
Oliver C. Ibe,Elements of Random Walk and Diffusion Processes,2013(随机游走,Levy过程,分数阶微积分)
Arnaud Debussche ,The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise,2013
Privault,Understanding Markov Chains: Examples and Applications,2013(空间Poissong过程,Poisson随机测度)
Cohen,Lévy matters II: Recent progress in theory and applications: Functional Lévy fields and scal functions,2013
Stoyan, Stochastic Geometry and Its Applications ,3rd 2013 (被引用次数:2388 Poisson点过程,Poisson随机测度)
Debussche,The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise,2013
Björn, Lévy matters III:Lévy-Type Processes: Construction, Approximation and Sample Path Properties,2014
Lifshits,Random Processes by Example,2014
应用的图书清单 回复可见
本帖隐藏的内容
应用Lundberg,On Random Processes and and their Application to Sickness and Accident Statistics,1940 (被引用次数:211)
Khinchin,Mathematical methods of queuing theory,1955(被引用次数:318 Poisson过程在排队论中的应用,)
Elliott,Probabilistic Number Theory,Ⅱ,1980.(被引用次数:478 无穷可分分布在概率数论中的应用)
Chaudhry, A first course in bulk queues,1983 (被引用次数:530 成群的排队系统,复合Poisson流到来)
*Snyder, Random Point Processes in Time and Space 2ed 1991(被引用次数:12)
Shlesinger,Lévy flights and related topics in physics,1995(被引用次数:554)
Grandell, Mixed poisson processes,1997(被引用次数:308)
Kalashnikov,Geometric Sums:Bounds for Rare Events with Applications Risk Analysis, Reliability, Queueing,1997(被引用次数:194)
Prabhu,Stochastic storage processes: queues, insurance risk, and dams, and data communication 2ed, 1998(被引用次数:419 排队论中的应用)
Budzban ,Probability on Algebraic Structures: Ams Special Session on Probability on Algebraic Structures, March 12-13, 1999, Gainesville, Florida ,2000.
*Barndorff-Nielsen,Lévy Processes Theory and Applications 2001(被引用次数:218里面是专题报告)
Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice,2001
Boyarchenko,Non-Gaussian Merton-Black-Scholes Theory 2002 (被引用次数:250)
Bening,Generalized Poisson Models and their Applications in Insurance and Finance 2002(被引用次数:60有几章讲复合Poisson分布)
*Cont, Financial Modelling with Jump Processes 2003 被引用次数:2187
*Schoutens,Levy Processes in Finance Pricing Financial Derivatives.2003 被引用次数:775
Gundlach,CreditRisk+ in the Banking Industry,2004 (被引用次数:51 商业银行风险信贷模型)
*Kyprianou,Introductory Lectures On Fluctuations Of Levy Processes With Applications,2006 (被引用次数:493 有题解)
*Kyprianou,Exotic Option Pricing and Advanced Levy Models ,2006,被引用次数:55
张连增,精算学中的随机过程,2006 (第12章平稳独立增量过程)
*Lévy processes and Lévy copulas with an application in insurance 2007 被引用次数:2
Øksendal,Applied Stochastic Control of Jump Diffusions,2007 (被引用次数:602 跳过程的随机控制方面)
Klugman,Loss models: from data to decisions,2008(被引用次数:1080)
**Nunno,Malliavin Calculus for Levy Processes with Applications to Finance 2009,被引用次数:135
**Mikosch, Non-Life Insurance Mathematics - An Introduction With The Poisson Process 2009(被引用次数:146 Poisson过程和Levy过程在保险中的应用)
Sundt,Recursions for Convolutions and Compound Distributions with Insurance Applications,2009 (被引用次数:23 递推关系研究复合Poisson过程)
Andersen,Handbook of Financial Time Series,2009 (被引用次数:65 )
Cherubini,Fourier Transform Methods in Finance,2010 (被引用次数:14 全书 很多章节是Fourier变换研究Levy过程的应用)
Asmussen,Applied Probability and Queues,2ed,2010 (被引用次数:2725 Levy过程在排队论中的应用)
Asmussen, Ruin Probabilities. 2nd Edition 2010(被引用次数:1194 ,破产理论的应用)
*Streit, Poisson Point Processes Imaging, Trcking, and Sensing 2010(被引用次数:36泊松点过程:成像,跟踪和传感)
*Schoutens , Levy processes in credit risk,2010(被引用次数:26)
Platen,Numerical Solution Of Stochastic Differential Equations With Jumps In Finance,2011 (被引用次数:46)
Cherubini,Dynamic Copula Methods in Finance,2011 (被引用次数:20 Lévy copulas)
*Svetlozar . Financial Models with Lévy Processes and Volatility Clustering 2011 (被引用次数:17)
Overhaus,Equity Derivatives: Theory and Applications,2011 (被引用次数:32)
Nakagawa,Stochastic Processes: With Applications to Reliability Theory,2011 (被引用次数:9 )
*Sakhnovich, Levy Processes Integral Equations Statistical Physics Connections And Interactions 2012(被引用次数:3 )
Capasso,An introduction to continuous-time stochastic processes: theory, models, and applications to finance, biology, and medicine,2012 (Levy过程的随机微积分 被引用次数:66)
*Miyahara,Option Pricing in Incomplete Markets Modeling Based on Geometric Lévy Processes and Minimal Entropy Martingale Measures ,2012
Lukasz Delong ,Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications: BSDEs with Jumps ,2013
Janssen, Applied Diffusion Processes from Engineering to Finance,2013Chiu,Stochastic Geometry and Its Applications 3rd,2013 (被引用次数:2398 随机几何)
Oliver,Elements of Random Walk and Diffusion Processes,2013
Oliver Ibe, Markov Processes for Stochastic Modeling, 2nd edition 2013
Janssen, Stochastic Processes From Physics to Finance 2ed 2013
**Kyprianou, Fluctuations Of Levy Processes With Applications,2013(Kyprianou(2006)的新版,书后有习题解答)
Stuart A. Klugman,Loss models further topics,2013 (Loss model的学术版本)
Mastro,Financial Derivative and Energy Market Valuation: Theory and Implementation in MATLAB,2013
统计
*Haight,Handbook of the Poisson Distribution,1976(被引用次数:415 手册查Poisson分布的各种结论)
*Janssen,Infinitely Divisible Statistical Experiments,1986(被引用次数:15 孤陋寡闻的理论,统计决策中的无穷可分实验)
Le Cam,Asymptotic Methods in Statistical Decision Theory,1986(被引用次数:1036第8,9章讲无穷可分实验)
Aldous,Probability Approximations Via the Poisson Clumping Heuristic,1989 (被引用次数:537)
Barbour,Poisson approximation..1992 (被引用次数:938)
Johnson, Kemp, Kotz, Univariate Discrete Distributions 3ed,2005(被引用次数:1973一元离散分布的专著,有一章讲Poison分布,有一章讲离散复合Poisson分布)
Kocherlakota,Bivariate Discrete Distributions,1992(被引用次数:212 有一章讲复合二元Poisson分布)
Winkelmann,Econometric Analysis of Count Data, 5ed,2008(被引用次数:566 有很多章节讲Poisson回归的广义线性模型)
*Hilbe,Negative Binomial Regression,2nd,2011( 被引用次数:779 负二项回归)
谢峰昌,韦博成,林金官,零过多数据的统计分析及其应用,2013 (负二项回归,广义负二项回归)
Cameron,Regression Analysis of Count Data,2ed 2013 (被引用次数:3968)