楼主: 阿狸与桃子
57670 35

[回归分析求助] ivprobit与ivtobit之后的各种检验 [推广有奖]

11
maotian 发表于 2015-12-21 00:37:51
yliu1大侠,按照您的提示,我下载了weakiv,然后在ivtobit回归之后,使用了weakiv的命令。结果如下:
我有几个疑问,1是H0: beta[amounta1:avnews1] = 0,是说h0是假设avnews1对amounta1的回归系数等于0?问题是,avnews1是模型中的解释变量,不是工具变量。不应该是假设,工具变量对解释变量的回归系数为0吗?
2是我的这些结果都拒绝了原假设,是说都不是弱工具变量?
3是最后的wald检验与ivtobit自带的wald test of exogeneity 有什么区别?

Weak instrument robust tests and confidence sets for IV tobit
H0: beta[amounta1:avnews1] = 0

Test        Statistic         p-value   Conf. level        Conf. Set      

CLR  stat(.)   =   159.91     0.0000       95%       [ 97.7195,   ...  ]  
K  chi2(1)   =   102.60     0.0000       95%       [ 95.4557,   ...  ]  
J  chi2(1)   =    61.50     0.0000       95%             null set      
K-J         <n.a.>            0.0000  95% (96%,99%)  [ 95.4557,   ...  ]  
AR  chi2(2)   =   164.10     0.0000       95%       [ 109.039,   ...  ]  

Wald  chi2(1)   =    16.10     0.0001       95%       [ 58.6688, 170.727]  

Confidence sets estimated for 100 points in [ 2.63955, 226.757].
Number of obs N = 2764.
Method = minimum distance (MD).  Weight on K in K-J test = 0.800.
Tests assume i.i.d. errors.  Small sample adjustments were used.
Wald statistic in last row is based on ivtobit estimation and is not robust to        weak        instruments.

12
maotian 发表于 2015-12-21 00:38:59
yliu1 发表于 2015-12-9 10:31
首先可以使用tobexog命令检测此处怀疑的内生变量是否具有内生性,此处结论应同ivtobit 输出结论尾部的wald  ...
yliu1大侠,按照您的提示,我下载了weakiv,然后在ivtobit回归之后,使用了weakiv的命令。结果如下:
我有几个疑问,1是H0: beta[amounta1:avnews1] = 0,是说h0是假设avnews1对amounta1的回归系数等于0?问题是,avnews1是模型中的解释变量,不是工具变量。不应该是假设,工具变量对解释变量的回归系数为0吗?
2是我的这些结果都拒绝了原假设,是说都不是弱工具变量?
3是最后的wald检验与ivtobit自带的wald test of exogeneity 有什么区别?

Weak instrument robust tests and confidence sets for IV tobit
H0: beta[amounta1:avnews1] = 0

Test        Statistic         p-value   Conf. level        Conf. Set      

CLR  stat(.)   =   159.91     0.0000       95%       [ 97.7195,   ...  ]  
K  chi2(1)   =   102.60     0.0000       95%       [ 95.4557,   ...  ]  
J  chi2(1)   =    61.50     0.0000       95%             null set      
K-J         <n.a.>            0.0000  95% (96%,99%)  [ 95.4557,   ...  ]  
AR  chi2(2)   =   164.10     0.0000       95%       [ 109.039,   ...  ]  

Wald  chi2(1)   =    16.10     0.0001       95%       [ 58.6688, 170.727]  

Confidence sets estimated for 100 points in [ 2.63955, 226.757].
Number of obs N = 2764.
Method = minimum distance (MD).  Weight on K in K-J test = 0.800.
Tests assume i.i.d. errors.  Small sample adjustments were used.
Wald statistic in last row is based on ivtobit estimation and is not robust to        weak        instruments.

13
gwrsm 发表于 2016-4-4 17:19:02
楼主解决了吗、、、、、、、、、、、

14
ccddhh 发表于 2017-4-18 12:04:23
楼主,可以求问ivprobit第一阶段的F值在哪里看吗?是自己汇报的吗,我怎么找不到呢...

15
saly@123 发表于 2017-5-9 15:24:51
yliu1 发表于 2015-12-9 10:31
首先可以使用tobexog命令检测此处怀疑的内生变量是否具有内生性,此处结论应同ivtobit 输出结论尾部的wald  ...
wald test of exogeneity 这个值怎么看?有标准吗?

16
Brook_Zhou 发表于 2017-5-10 19:53:27
顶一下,高手来回答一下吧。
原假设是不是“强IV”?

17
zabbyy 发表于 2017-6-24 15:55:49
yliu1 发表于 2015-12-9 10:31
首先可以使用tobexog命令检测此处怀疑的内生变量是否具有内生性,此处结论应同ivtobit 输出结论尾部的wald  ...
iv-tobit回归后的结果wald检验怎么看呢?

18
sdpanbo2015 学生认证  发表于 2017-7-19 05:11:30
maotian 发表于 2015-12-21 00:37
yliu1大侠,按照您的提示,我下载了weakiv,然后在ivtobit回归之后,使用了weakiv的命令。结果如下:
我有 ...
根据weakiv的guide:
“For reference, weakiv also reports a Wald test using the relevant traditional IV parameter and VCE estimators; this Wald test is identical to what would be obtained by standard estimation using ivregress, ivreg2, ivreg2h, xtivreg, xtivreg2, xtabond2, ivprobit or ivtobit.” 个人意见,他说的identical应该是和回归结果表中的wald of exogeneity的含义是一致的

19
sdpanbo2015 学生认证  发表于 2017-7-19 05:13:19
maotian 发表于 2015-12-21 00:37
yliu1大侠,按照您的提示,我下载了weakiv,然后在ivtobit回归之后,使用了weakiv的命令。结果如下:
我有 ...
    weakiv calculates Lagrange multiplier (LM) or minimum distance (MD) versions of weak-instrument-robust tests of the coefficient on the endogenous variable beta in an instrumental variables (IV) estimation.  In an exactly-identified model where the number of instruments equals the number of endogenous regressors, it reports the Anderson-Rubin (AR) test statistic.  When the IV model contains more instruments than endogenous regressors (the model is overidentified), weakiv also conducts the conditional likelihood ratio (CLR) test, the Lagrange multiplier K test, the J overidentification test, and a combination of the K and overidentification tests (K-J).

    The default behavior of weakiv is to report LM versions of these tests for linear models, and MD versions for the IV probit and IV tobit models.  The MD versions of these tests can be requested by the md option; for linear models, these are equivalent to Wald-type tests.  The LM versions of these tests are not available for IV probit/tobit models.  In the current implementation of weakiv, the CLR test is available for the 1-endog-regressor case only.  For reference, weakiv also reports a Wald test using the relevant traditional IV parameter and VCE estimators; this Wald test is identical to what would be obtained by standard estimation using ivregress, ivreg2, ivreg2h, xtivreg, xtivreg2, xtabond2, ivprobit or ivtobit.

    The AR test is a joint test of the structural parameter (beta=b0, where beta is the coefficient on the endogenous regressor) and the exogeneity of the instruments (E(Zu)=0, where Z are the instruments and u is the disturbance in the structural equation).  The AR statistic can be decomposed into the K statistic (which tests only H0:beta=b0, assuming the exogeneity conditions E(Zu)=0 are satisfied) and the J statistic (which tests only H0:E(Zu)=0, assuming that beta=b0 is true).  This J statistic is evaluated at the null hypothesis, as opposed to the Hansen J statistic from GMM estimation, which is evaluated at the parameter estimate.

    The CLR test is a related approach to testing H0:beta=b0.  It has good power properties, and in particular is the most powerful test for the linear model under homoskedasticity (within a class of invariant similar tests).  An important advantage of the CLR test over the K test is that the K test can lose power in some regions of the parameter space when the objective function has a local extremum or inflection point; the CLR test does not suffer from this problem.  The CLR test is a function of a rank statistic rk.  For the case of more than one endogenous regressor, there are several such rank tests available; weakiv employs the SVD-based test of Kleibergen and Paap (2006) (see e.g. ranktest, which has the computational advantage of a closed-form solution.  The rank statistic rk can also be interpreted as a test of underidentification of the model (see Kleibergen 2005); under the null hypothesis that the model is underidentified, rk has a chi-squared distribution.

    The CLR test statistic has a non-standard distribution.  For the case of i.i.d. linear models with a single weakly-identified endogenous regressor, weakiv uses the fast and accurate algorithm implemented by Mikusheva and Poi
    (2006).  The default behavior of weakiv for non-i.i.d. and nonlinear models with a single weakly-identified endogenous regressor is to use the same algorithm to obtain p-values for the CLR test; although this is not the correct
    p-value function for these cases, the simulations by Finlay and Magnusson (2009) suggest it provides a good approximation.  For all models with multiple endogenous regressors, weakiv obtains the p-value by simulation; the seed
    for the random number generator is temporarily set to the value 12345 so that the resulting p-values are replicable.  The default number of simulations is 10,000; this can be altered using the clrsims(#) option.  This option can
    also be used to override the default behavior of the i.i.d.-linear-model algorithm with single-endogenous regressor models.  A larger number of simulations will give a more accurate p-value but can slow execution, especially in
    grid searches.  The simulation method can be turned off completely by specifying clrsims(0).

    The K-J test combines the K and J statistics to jointly test the structural parameter and the exogeneity of the instruments.  It is more efficient than the AR test and allows different weights or test levels to be put on the
    parameter and overidentification hypotheses.  Unlike the K test, the K-J test does not suffer from the problem of spurious power losses.  To perform the K-J test, the researcher specifies the significance levels alpha_K and
    alpha_J for the K and J statistics.  Because the K and J tests are independent, the null of the K-J test is rejected if either p_K<alpha_K or p_J<alpha_J, where p_K and p_J are the K and J p-values, respectively.  The overall
    size of the K-J test is given by (1-(1-alpha_K)*(1-alpha_J)).

20
sdpanbo2015 学生认证  发表于 2017-7-19 05:13:22
maotian 发表于 2015-12-21 00:37
yliu1大侠,按照您的提示,我下载了weakiv,然后在ivtobit回归之后,使用了weakiv的命令。结果如下:
我有 ...
    weakiv calculates Lagrange multiplier (LM) or minimum distance (MD) versions of weak-instrument-robust tests of the coefficient on the endogenous variable beta in an instrumental variables (IV) estimation.  In an exactly-identified model where the number of instruments equals the number of endogenous regressors, it reports the Anderson-Rubin (AR) test statistic.  When the IV model contains more instruments than endogenous regressors (the model is overidentified), weakiv also conducts the conditional likelihood ratio (CLR) test, the Lagrange multiplier K test, the J overidentification test, and a combination of the K and overidentification tests (K-J).

    The default behavior of weakiv is to report LM versions of these tests for linear models, and MD versions for the IV probit and IV tobit models.  The MD versions of these tests can be requested by the md option; for linear models, these are equivalent to Wald-type tests.  The LM versions of these tests are not available for IV probit/tobit models.  In the current implementation of weakiv, the CLR test is available for the 1-endog-regressor case only.  For reference, weakiv also reports a Wald test using the relevant traditional IV parameter and VCE estimators; this Wald test is identical to what would be obtained by standard estimation using ivregress, ivreg2, ivreg2h, xtivreg, xtivreg2, xtabond2, ivprobit or ivtobit.

    The AR test is a joint test of the structural parameter (beta=b0, where beta is the coefficient on the endogenous regressor) and the exogeneity of the instruments (E(Zu)=0, where Z are the instruments and u is the disturbance in the structural equation).  The AR statistic can be decomposed into the K statistic (which tests only H0:beta=b0, assuming the exogeneity conditions E(Zu)=0 are satisfied) and the J statistic (which tests only H0:E(Zu)=0, assuming that beta=b0 is true).  This J statistic is evaluated at the null hypothesis, as opposed to the Hansen J statistic from GMM estimation, which is evaluated at the parameter estimate.

    The CLR test is a related approach to testing H0:beta=b0.  It has good power properties, and in particular is the most powerful test for the linear model under homoskedasticity (within a class of invariant similar tests).  An important advantage of the CLR test over the K test is that the K test can lose power in some regions of the parameter space when the objective function has a local extremum or inflection point; the CLR test does not suffer from this problem.  The CLR test is a function of a rank statistic rk.  For the case of more than one endogenous regressor, there are several such rank tests available; weakiv employs the SVD-based test of Kleibergen and Paap (2006) (see e.g. ranktest, which has the computational advantage of a closed-form solution.  The rank statistic rk can also be interpreted as a test of underidentification of the model (see Kleibergen 2005); under the null hypothesis that the model is underidentified, rk has a chi-squared distribution.

    The CLR test statistic has a non-standard distribution.  For the case of i.i.d. linear models with a single weakly-identified endogenous regressor, weakiv uses the fast and accurate algorithm implemented by Mikusheva and Poi
    (2006).  The default behavior of weakiv for non-i.i.d. and nonlinear models with a single weakly-identified endogenous regressor is to use the same algorithm to obtain p-values for the CLR test; although this is not the correct
    p-value function for these cases, the simulations by Finlay and Magnusson (2009) suggest it provides a good approximation.  For all models with multiple endogenous regressors, weakiv obtains the p-value by simulation; the seed
    for the random number generator is temporarily set to the value 12345 so that the resulting p-values are replicable.  The default number of simulations is 10,000; this can be altered using the clrsims(#) option.  This option can
    also be used to override the default behavior of the i.i.d.-linear-model algorithm with single-endogenous regressor models.  A larger number of simulations will give a more accurate p-value but can slow execution, especially in
    grid searches.  The simulation method can be turned off completely by specifying clrsims(0).

    The K-J test combines the K and J statistics to jointly test the structural parameter and the exogeneity of the instruments.  It is more efficient than the AR test and allows different weights or test levels to be put on the
    parameter and overidentification hypotheses.  Unlike the K test, the K-J test does not suffer from the problem of spurious power losses.  To perform the K-J test, the researcher specifies the significance levels alpha_K and
    alpha_J for the K and J statistics.  Because the K and J tests are independent, the null of the K-J test is rejected if either p_K<alpha_K or p_J<alpha_J, where p_K and p_J are the K and J p-values, respectively.  The overall
    size of the K-J test is given by (1-(1-alpha_K)*(1-alpha_J)).

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-18 14:50