楼主: hylpy1
4431 18

[讨论交流] 数系,纪志刚(上海交通大学科学史系) [推广有奖]

11
hylpy1 在职认证  发表于 2015-7-3 22:48:52
虚数与向量   1797年,挪威的韦塞尔(C. Wessel,1745-1818)写了一篇论文“关于方向的分析表示”,试图利用向量来表示复数,遗憾的是这篇文章的重大价值直到1897年译成法文后,才被人们重视。瑞士人阿甘达(J. Argand ,1768-1822)给出复数的一个稍微不同的几何解释。他注意到负数是正数的一个扩张,它是将方向和大小结合起来得出的,他的思路是:能否利用新增添某种新的概念来扩张实数系?在使人们接受复数方面,高斯的工作更为有效。他不仅将 a+ bi 表示为复平面上的一点 ( a, b),而且阐述了复数的几何加法和乘法。他还说,如果1, —1 和原来不称为正、负和虚单位,而称为直、反和侧单位,那么人们对这些数就可能不会产生种种阴暗神秘的印象。他说几何表示可以使人们对虚数真正有一个新的看法,他引进术语“复数”(complex number)以与虚数相对立,并用 i 代替 。

复数a+ bi   在澄清复数概念的工作中,爱尔兰数学家哈米尔顿(Hamilton,1805 – 1865)是非常重要的。哈米尔顿所关心的是算术的逻辑,并不满足于几何直观。他指出:复数a+ bi 不是 2 + 3意义上的一个真正的和,加号的使用是历史的偶然,而 bi 不能加到a 上去。复数a+ bi 只不过是实数的有序数对(a,b),并给出了有序数对的四则运算,同时,这些运算满足结合律、交换率和分配率。在这样的观点下,不仅复数被逻辑地建立在实数的基础上,而且至今还有点神秘的也完全消除了。
凡事,一笑而过..................

12
hylpy1 在职认证  发表于 2015-7-3 22:50:13
综述   

本帖隐藏的内容

回顾数系的历史发展,似乎给人这样一种印象:数系的每一次扩充,都是在旧的数系中添加新的元素。如分数添加于整数,负数添加于正数,无理数添加于有理数,复数添加于实数。但是,现代数学的观点认为:数系的扩张,并不是在旧的数系中添加新元素,而是在旧的数系之外去构造一个新的代数系,其元素在形式上与旧的可以完全不同,但是,它包含一个与旧代数系同构的子集,这种同构必然保持新旧代数系之间具有完全相同的代数构造。当人们澄清了复数的概念后,新的问题是:是否还能在保持复数基本性质的条件下对复数进行新的扩张呢?答案是否定的。当哈米尔顿试图寻找三维空间复数的类似物时,他发现自己被迫要做两个让步:第一,他的新数要包含四个分量;第二,他必须牺牲乘法交换率。这两个特点都是对传统数系的革命。他称这新的数为“四元数”。“四元数”的出现昭示着传统观念下数系扩张的结束。1878年,富比尼(F.Frobenius, 1849 – 1917) 证明:具有有限个原始单元的、有乘法单位元素的实系数先行结合代数,如果服从结合律,那就只有复数和实四元数的代数。
  数学的思想一旦冲破传统模式的藩篱,便会产生无可估量的创造力。哈米尔顿的四元数的发明,使数学家们认识到既然可以抛弃实数和复数的交换性去构造一个有意义、有作用的新“数系”,那么就可以较为自由地考虑甚至偏离实数和复数的通常性质的代数构造。数系的扩张虽然就此终止,但是,通向抽象代数的大门被打开了。




  纪志刚
  上海交通大学科学史系 上海
凡事,一笑而过..................

13
yuyike 发表于 2015-7-3 22:50:28
不错不错
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

14
゛为つaiり=んU 发表于 2015-7-3 22:53:52
看看学习了
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

15
cntagu 发表于 2015-7-4 13:14:19
看看。。。。
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

16
fengyg 企业认证  发表于 2015-7-6 07:55:42
kankan
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

17
bailihongchen 发表于 2015-7-15 18:27:20
非常感谢楼主分享,顶一个先
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

18
caifacai 发表于 2015-7-19 12:11:06
学习了!感谢分享!
已有 1 人评分论坛币 收起 理由
hylpy1 + 1 精彩帖子

总评分: 论坛币 + 1   查看全部评分

19
黑丝刘盼 发表于 2024-10-4 21:16:53
感谢楼主慷慨分享!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 20:52