南南数据 发表于 2016-1-27 00:23
可能是共同方法偏差不明显?具体看模型吧
加入CMV后,模型:
Degrees of Freedom = 1253
Minimum Fit Function Chi-Square = 87744.9986 (P = 0.0)
Normal Theory Weighted Least Squares Chi-Square = 22511.9721 (P = 0.0)
Estimated Non-centrality Parameter (NCP) = 21258.9721
90 Percent Confidence Interval for NCP = (20775.0814 ; 21749.3107)
Minimum Fit Function Value = 148.7203
Population Discrepancy Function Value (F0) = 36.0322
90 Percent Confidence Interval for F0 = (35.2120 ; 36.8632)
Root Mean Square Error of Approximation (RMSEA) = 0.1696
90 Percent Confidence Interval for RMSEA = (0.1676 ; 0.1715)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.0000
Expected Cross-Validation Index (ECVI) = 38.5796
90 Percent Confidence Interval for ECVI = (37.7595 ; 39.4107)
ECVI for Saturated Model = 4.6712
ECVI for Independence Model = 143.3586
Chi-Square for Independence Model with 1326 Degrees of Freedom = 84477.5713
Independence AIC = 84581.5713
Model AIC = 22761.9721
Saturated AIC = 2756.0000
Independence CAIC = 84861.4257
Model CAIC = 23434.6991
Saturated CAIC = 10172.1425
Normed Fit Index (NFI) = -0.0387
Non-Normed Fit Index (NNFI) = -0.1008
Parsimony Normed Fit Index (PNFI) = -0.0365
Comparative Fit Index (CFI) = 0.0
Incremental Fit Index (IFI) = -0.0393
Relative Fit Index (RFI) = -0.0992
Critical N (CN) = 10.2280
Root Mean Square Residual (RMR) = 0.1534
Standardized RMR = 0.1533
Goodness of Fit Index (GFI) = 0.4053
Adjusted Goodness of Fit Index (AGFI) = 0.3459
Parsimony Goodness of Fit Index (PGFI) = 0.3685