- 阅读权限
- 255
- 威望
- 1 级
- 论坛币
- 49635 个
- 通用积分
- 55.7537
- 学术水平
- 370 点
- 热心指数
- 273 点
- 信用等级
- 335 点
- 经验
- 57805 点
- 帖子
- 4005
- 精华
- 21
- 在线时间
- 582 小时
- 注册时间
- 2005-5-8
- 最后登录
- 2023-11-26
|
Estimate LM Model with Covariates in the Latent Model
- Examples
- ## Not run:
- # Example based on self-rated health status (SRHS) data
- # load SRHS data
- data(data_SRHS_long)
- dataSRHS = data_SRHS_long
- TT = 8
- head(dataSRHS)
- res = long2matrices(dataSRHS$id,X=cbind(dataSRHS$gender-1,
- dataSRHS$race==2|dataSRHS$race==3, dataSRHS$education==4,
- dataSRHS$education==5,dataSRHS$age-50,(dataSRHS$age-50)^2/100),
- Y=dataSRHS$srhs)
- # matrix of responses (with ordered categories from 0 to 4)
- S = 5-res$YY
- n = dim(S)[1]
- # matrix of covariates (for the first and the following occasions)
- # colums are: gender,race,educational level (2 columns),age,age^2)
- X1 =res$XX[,1,]
- X2 =res$XX[,2:TT,]
- # estimate the model
- est2f = est_lm_cov_latent(S,X1,X2,k=2,output=TRUE,out_se=TRUE)
- # average transition probability matrix
- PI = round(apply(est2f$PI[,,,2:TT],c(1,2),mean),4)
- # Transition probability matrix for white females with high educational level
- ind1 = (X1[,1]==1 & X1[,2]==0 & X1[,4]==1)
- PI1 = round(apply(est2f$PI[,,ind1,2:TT],c(1,2),mean),4)
- # Transition probability matrix for non-white male, low educational level
- ind2 = (X1[,1]==0 & X1[,2]==1& X1[,3]==0 & X1[,4]==0)
- PI2 = round(apply(est2f$PI[,,ind2,2:TT],c(1,2),mean),4)
- ## End(Not run)
复制代码https://cran.r-project.org/web/packages/LMest/LMest.pdf
|
|