楼主: aokaas
9016 35

[其他] Introduction to Linear Regression Analysis, 5th Edition Douglas 清晰完整版 [推广有奖]

  • 2关注
  • 4粉丝

本科生

25%

还不是VIP/贵宾

-

威望
0
论坛币
16483 个
通用积分
11.7814
学术水平
9 点
热心指数
12 点
信用等级
4 点
经验
1789 点
帖子
40
精华
0
在线时间
83 小时
注册时间
2013-6-9
最后登录
2023-10-14

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
本贴附件为扫描非完整版,下载前请先看评论再做决定。
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Douglas C. Montgomery
1.png 2.png
Introduction to Linear Regression Analysis.pdf (87.63 MB, 需要: 25 个论坛币)
Publisher: John Wiley & Sons
Release Date: April 2012
  • Book Description
    Praise for the Fourth Edition

    "As with previous editions, the authors have produced a leading textbook on regression."

    —Journal of the American Statistical Association

    A comprehensive and up-to-date introduction to the fundamentals of regression analysis

    Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today's cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.

    Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including:

    A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models

    Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model

    Tests on individual regression coefficients and subsets of coefficients

    Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data.

    In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material, and a related FTP site features the presented data sets, extensive problem solutions, software hints, and PowerPoint slides to facilitate instructional use of the book.

    Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.

    Table of Contents
    Cover Page
    Title Page
    Copyright
    Contents
    PREFACE
    CHAPTER 1: INTRODUCTION
    1.1 REGRESSION AND MODEL BUILDING
    1.2 DATA COLLECTION
    1.3 USES OF REGRESSION
    1.4 ROLE OF THE COMPUTER
    CHAPTER 2: SIMPLE LINEAR REGRESSION
    2.1 SIMPLE LINEAR REGRESSION MODEL
    2.2 LEAST-SQUARES ESTIMATION OF THE PARAMETERS
    2.3 HYPOTHESIS TESTING ON THE SLOPE AND INTERCEPT
    2.4 INTERVAL ESTIMATION IN SIMPLE LINEAR REGRESSION
    2.5 PREDICTION OF NEW OBSERVATIONS
    2.6 COEFFICIENT OF DETERMINATION
    2.7 A SERVICE INDUSTRY APPLICATION OF REGRESSION
    2.8 USING SAS® AND R FOR SIMPLE LINEAR REGRESSION
    2.9 SOME CONSIDERATIONS IN THE USE OF REGRESSION
    2.10 REGRESSION THROUGH THE ORIGIN
    2.11 ESTIMATION BY MAXIMUM LIKELIHOOD
    2.12 CASE WHERE THE REGRESSOR x IS RANDOM
    PROBLEMS
    CHAPTER 3: MULTIPLE LINEAR REGRESSION
    3.1 MULTIPLE REGRESSION MODELS
    3.2 ESTIMATION OF THE MODEL PARAMETERS
    3.3 HYPOTHESIS TESTING IN MULTIPLE LINEAR REGRESSION
    3.4 CONFIDENCE INTERVALS IN MULTIPLE REGRESSION
    3.5 PREDICTION OF NEW OBSERVATIONS
    3.6 A MULTIPLE REGRESSION MODEL FOR THE PATIENT SATISFACTION DATA
    3.7 USING SAS AND R FOR BASIC MULTIPLE LINEAR REGRESSION
    3.8 HIDDEN EXTRAPOLATION IN MULTIPLE REGRESSION
    3.9 STANDARDIZED REGRESSION COEFFLCIENTS
    3.10 MULTICOLLINEARITY
    3.11 WHY DO REGRESSION COEFFICIENTS HAVE THE WRONG SIGN?
    PROBLEMS
    CHAPTER 4: MODEL ADEQUACY CHECKING
    4.1 INTRODUCTION
    4.2 RESIDUAL ANALYSIS
    4.3 PRESS STATISTIC
    4.4 DETECTION AND TREATMENT OF OUTLIERS
    4.5 LACK OF FIT OF THE REGRESSION MODEL
    PROBLEMS
    CHAPTER 5: TRANSFORMATIONS AND WEIGHTING TO CORRECT MODEL INADEQUACIES
    5.1 INTRODUCTION
    5.2 VARIANCE-STABILIZING TRANSFORMATIONS
    5.3 TRANSFORMATIONS TO LINEARIZE THE MODEL
    5.4 ANALYTICAL METHODS FOR SELECTING A TRANSFORMATION
    5.5 GENERALIZED AND WEIGHTED LEAST SQUARES
    5.6 REGRESSION MODELS WITH RANDOM EFFECTS
    PROBLEMS
    CHAPTER 6: DIAGNOSTICS FOR LEVERAGE AND INFLUENCE
    6.1 IMPORTANCE OF DETECTING INFLUENTIAL OBSERVATIONS
    6.2 LEVERAGE
    6.3 MEASURES OF INFLUENCE: COOK'S D
    6.4 MEASURES OF INFLUENCE: DFFITS AND DFBETAS
    6.5 A MEASURE OF MODEL PERFORMANCE
    6.6 DETECTING GROUPS OF INFLUENTIAL OBSERVATIONS
    6.7 TREATMENT OF INFLUENTIAL OBSERVATIONS
    PROBLEMS
    CHAPTER 7: POLYNOMIAL REGRESSION MODELS
    7.1 INTRODUCTION
    7.2 POLYNOMIAL MODELS IN ONE VARIABLE
    7.3 NONPARAMETRIC REGRESSION
    7.4 POLYNOMIAL MODELS IN TWO OR MORE VARIABLES
    7.5 ORTHOGONAL POLYNOMIALS
    PROBLEMS
    CHAPTER 8: INDICATOR VARIABLES
    8.1 GENERAL CONCEPT OF INDICATOR VARIABLES
    8.2 COMMENTS ON THE USE OF INDICATOR VARIABLES
    8.3 REGRESSION APPROACH TO ANALYSIS OF VARIANCE
    PROBLEMS
    CHAPTER 9: MULTICOLLINEARITY
    9.1 INTRODUCTION
    9.2 SOURCES OF MULTICOLLINEARITY
    9.3 EFFECTS OF MULTICOLLINEARITY
    9.4 MULTICOLLINEARITY DIAGNOSTICS
    9.5 METHODS FOR DEALING WITH MULTICOLLINEARITY
    9.6 USING SAS TO PERFORM RIDGE AND PRINCIPAL-COMPONENT REGRESSION
    PROBLEMS
    CHAPTER 10: VARIABLE SELECTION AND MODEL BUILDING
    10.1 INTRODUCTION
    10.2 COMPUTATIONAL TECHNIQUES FOR VARIABLE SELECTION
    10.3 STRATEGY FOR VARIABLE SELECTION AND MODEL BUILDING
    10.4 CASE STUDY: GORMAN AND TOMAN ASPHALT DATA USING SAS
    PROBLEMS
    CHAPTER 11: VALIDATION OF REGRESSION MODELS
    11.1 INTRODUCTION
    11.2 VALIDATION TECHNIQUES
    11.3 DATA FROM PLANNED EXPERIMENTS
    PROBLEMS
    CHAPTER 12: INTRODUCTION TO NONLINEAR REGRESSION
    12.1 LINEAR AND NONLINEAR REGRESSION MODELS
    12.2 ORIGINS OF NONLINEAR MODELS
    12.3 NONLINEAR LEAST SQUARES
    12.4 TRANFORMATION TO A LINEAR MODEL
    12.5 PARAMETER ESTIMATION IN A NONLINEAR SYSTEM
    12.6 STATISTICAL INFERENCE IN NONLINEAR REGRESSION
    12.7 EXAMPLES OF NONLINEAR REGRESSION MODELS
    12.8 USING SAS AND R
    PROBLEMS
    CHAPTER 13: GENERALIZED LINEAR MODELS
    13.1 INTRODUCTION
    13.2 LOGISTIC REGRESSION MODELS
    13.3 POISSON REGRESSION
    13.4 THE GENERALIZED LINEAR MODEL
    PROBLEMS
    CHAPTER 14: REGRESSION ANALYSIS OF TIME SERIES DATA
    14.1 INTRODUCTION TO REGRESSION MODELS FOR TIME SERIES DATA
    14.2 DETECTING AUTOCORRELATION: THE DURBIN–WATSON TEST
    14.3 ESTIMATING THE PARAMETERS IN TIME SERIES REGRESSION MODELS
    PROBLEMS
    CHAPTER 15: OTHER TOPICS IN THE USE OF REGRESSION ANALYSIS
    15.1 ROBUST REGRESSION
    15.2 EFFECT OF MEASUREMENT ERRORS IN THE REGRESSORS
    15.3 INVERSE ESTIMATION—THE CALIBRATION PROBLEM
    15.4 BOOTSTRAPPING IN REGRESSION
    15.5 CLASSIFICATION AND REGRESSION TREES (CART)
    15.6 NEURAL NETWORKS
    15.7 DESIGNED EXPERIMENTS FOR REGRESSION
    PROBLEMS
    APPENDIX A: STATISTICAL TABLES
    APPENDIX B: DATA SETS FOR EXERCISES
    APPENDIX C: SUPPLEMENTAL TECHNICAL MATERIAL
    C.1 BACKGROUND ON BASIC TEST STATISTICS
    C.2 BACKGROUND FROM THE THEORY OF LINEAR MODELS
    C.3 IMPORTANT RESULTS ON SS R AND SS RES
    C.4 GAUSS–MARKOV THEOREM, VAR(ε) = σ2I
    C.5 COMPUTATIONAL ASPECTS OF MULTIPLE REGRESSION
    C.6 RESULT ON THE INVERSE OF A MATRIX
    C.7 DEVELOPMENT OF THE PRESS STATISTIC
    C.8 DEVELOPMENT OF S2(i)
    C.9 OUTLIER TEST BASED ON R-STUDENT
    C.10 INDEPENDENCE OF RESIDUALS AND FITTED VALUES
    C.11 GAUSS-MARKOV THEOREM, VAR(ε) = V
    C.12 BIAS IN MS RES WHEN THE MODEL IS UNDERSPECIFIED
    C.13 COMPUTATION OF INFLUENCE DIAGNOSTICS
    C.14 GENERALIZED LINEAR MODELS
    APPENDIX D: INTRODUCTION TO SAS
    D.1 BASIC DATA ENTRY
    D.2 CREATING PERMANENT SAS DATA SETS
    D.3 IMPORTING DATA FROM AN EXCEL FILE
    D.4 OUTPUT COMMAND
    D.5 LOG FILE
    D.6 ADDING VARIABLES TO AN EXISTING SAS DATA SET
    APPENDIX E: INTRODUCTION TO R TO PERFORM LINEAR REGRESSION ANALYSIS
    E.1 Basic Background on R
    E.2 Basic Data Entry
    E.3 Brief Comments on Other Functionality in R
    E.4 R Commander
    REFERENCES
    INDEX




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction regression troduction regressio Analysis 线性回归 linear regression

已有 5 人评分经验 论坛币 学术水平 热心指数 收起 理由
aclyang + 40 精彩帖子
guo.bailing + 100 + 1 精彩帖子
yuedragon + 1 精彩帖子
我的素质低 + 100 + 10 + 2 + 2 精彩帖子
statax + 15 + 1 精彩帖子

总评分: 经验 + 200  论坛币 + 65  学术水平 + 2  热心指数 + 5   查看全部评分

本帖被以下文库推荐

沙发
feders 发表于 2016-10-10 18:46:07 |只看作者 |坛友微信交流群
谢谢分享!好书

使用道具

藤椅
sacromento 学生认证  发表于 2016-10-13 01:20:01 来自手机 |只看作者 |坛友微信交流群
谢谢分享啊!

使用道具

板凳
mj2012 发表于 2016-10-13 05:56:55 来自手机 |只看作者 |坛友微信交流群
aokaas 发表于 2016-10-10 12:36
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Dou ...
有点波贵啊

使用道具

报纸
Kamize 学生认证  发表于 2016-10-13 09:40:58 来自手机 |只看作者 |坛友微信交流群
aokaas 发表于 2016-10-10 12:36
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Dou ...
贵了吧

使用道具

地板
aokaas 发表于 2016-10-13 13:47:01 |只看作者 |坛友微信交流群
Kamize 发表于 2016-10-13 09:40
贵了吧
这叫姜太公钓鱼,愿者上钩。这本书下载下来不容易

使用道具

7
lonestone 在职认证  发表于 2016-10-14 06:22:21 来自手机 |只看作者 |坛友微信交流群
aokaas 发表于 2016-10-10 12:36
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Dou ...
谢谢你
已有 1 人评分热心指数 收起 理由
aokaas + 1 我很赞同

总评分: 热心指数 + 1   查看全部评分

使用道具

8
果缤纷1992 发表于 2016-10-14 15:56:59 来自手机 |只看作者 |坛友微信交流群
aokaas 发表于 2016-10-10 12:36
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Dou ...
nice,棒棒哒

使用道具

9
Xvideo 在职认证  发表于 2016-10-14 20:08:56 来自手机 |只看作者 |坛友微信交流群
aokaas 发表于 2016-10-10 12:36
Introduction to Linear Regression Analysis, 5th Editionby G. Geoffrey Vining, Elizabeth A. Peck, Dou ...
非常感謝

使用道具

10
dcmc 发表于 2016-10-15 00:08:41 |只看作者 |坛友微信交流群
谢谢分享

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 14:40