楼主: martinnyj
2705 8

Intermediate Probability: A Computational Approach [推广有奖]

  • 0关注
  • 58粉丝

学科带头人

44%

还不是VIP/贵宾

-

威望
0
论坛币
211906 个
通用积分
100.9944
学术水平
183 点
热心指数
227 点
信用等级
154 点
经验
51222 点
帖子
868
精华
0
在线时间
1596 小时
注册时间
2007-6-14
最后登录
2024-11-1

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Intermediate Probability: A Computational Approach
Marc Paolella
ISBN: 978-0-470-02637-3
Hardcover
430 pages
October 2007



Intermediate Probability is the natural extension of the author's Fundamental Probability. It details several highly important topics, from standard ones such as order statistics, multivariate normal, and convergence concepts, to more advanced ones which are usually not addressed at this mathematical level, or have never previously appeared in textbook form. The author adopts a computational approach throughout, allowing the reader to directly implement the methods, thus greatly enhancing the learning experience and clearly illustrating the applicability, strengths, and weaknesses of the theory. The book:
  • Places great emphasis on the numeric computation of convolutions of random variables, via numeric integration, inversion theorems, fast Fourier transforms, saddlepoint approximations, and simulation.
  • Provides introductory material to required mathematical topics such as complex numbers, Laplace and Fourier transforms, matrix algebra, confluent hypergeometric functions, digamma functions, and Bessel functions.
  • Presents full derivation and numerous computational methods of the stable Paretian and the singly and doubly non-central distributions.
  • A whole chapter is dedicated to mean-variance mixtures, NIG, GIG, generalized hyperbolic and numerous related distributions.
  • A whole chapter is dedicated to nesting, generalizing, and asymmetric extensions of popular distributions, as have become popular in empirical finance and other applications.
  • Provides all essential programming code in Matlab and R.
The user-friendly style of writing and attention to detail means that self-study is easily possible, making the book ideal for senior undergraduate and graduate students of mathematics, statistics, econometrics, finance, insurance, and computer science, as well as researchers and professional statisticians working in these fields.



Preface. I Sums of Random Variables. 1 Generating functions. 1.1 The moment generating function. 1.2 Characteristic functions. 1.3 Use of the fast Fourier transform. 1.4 Multivariate case. 1.5 Problems. 2 Sums and other functions of several random variables. 2.1 Weighted sums of independent random variables. 2.2 Exact integral expressions for functions of two continuous random variables. 2.3 Approximating the mean and variance. 2.4 Problems. 3 The multivariate normal distribution. 3.1 Vector expectation and variance. 3.2 Basic properties of the multivariate normal. 3.3 Density and moment generating function. 3.4 Simulation and c.d.f. calculation. 3.5 Marginal and conditional normal distributions. 3.6 Partial correlation. 3.7 Joint distribution of Xbar and S2 for i.i.d. normal samples. 3.8 Matrix algebra. 3.9 Problems. II Asymptotics and Other Approximations. 4 Convergence concepts. 4.1 Inequalities for random variables. 4.2 Convergence of sequences of sets. 4.3 Convergence of sequences of random variables. 4.4 The central limit theorem. 4.5 Problems. 5 Saddlepoint approximations. 5.1 Univariate. 5.2 Multivariate. 5.3 The hypergeometric functions 1F1 and 2F1. 5.4 Problems. 6 Order statistics. 6.1 Distribution theory for i.i.d. samples. 6.2 Further examples. 6.3 Distribution theory for dependent samples. 6.4 Problems. III More Flexible and Advanced Random Variables. 7 Generalizing and mixing. 7.1 Basic methods of extension. 7.2 Weighted sums of independent random variables. 7.3 Mixtures. 7.4 Problems. 8 The stable Paretian distribution. 8.1 Symmetric stable. 8.2 Asymmetric stable. 8.3 Moments. 8.4 Simulation. 8.5 Generalized central limit theorem. 9 Generalized inverse Gaussian and generalized hyperbolic distributions. 9.1 Introduction. 9.2 The modified Bessel function of the third kind. 9.3 Mixtures of normal distributions. 9.4 The generalized inverse Gaussian distribution. 9.5 The generalized hyperbolic distribution. 9.6 Properties of the GHyp distribution family. 9.7 Problems. 10 Noncentral distributions. 10.1 Noncentral chi-square. 10.2 Singly and doubly noncentral F. 10.3 Noncentral beta. 10.4 Singly and doubly noncentral t. 10.5 Saddlepoint uniqueness for the doubly noncentral F. 10.6 Problems. A Notation and distribution tables. References. Index.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:intermediate Probability intermediat Computation bability Probability intermediate Approach

Intermediate Probability - A Computational Approach.pdf

3.82 MB

需要: 5 个论坛币  [购买]

沙发
xbz 发表于 2009-7-30 16:25:45 |只看作者 |坛友微信交流群
a good book,,thank you very much

使用道具

藤椅
nancybnye 发表于 2010-3-23 06:04:51 |只看作者 |坛友微信交流群
Very good book and good quality too. Thank you so much!

使用道具

板凳
pangyatou 发表于 2010-6-12 21:28:02 |只看作者 |坛友微信交流群
十分需要这本书,正好买来看看:)

使用道具

报纸
wansea 发表于 2010-6-14 23:36:37 |只看作者 |坛友微信交流群
的确是本好书!做资产定价应该经常用到!
平常人,平常心

使用道具

地板
permanentjade 在职认证  发表于 2011-2-24 20:58:44 |只看作者 |坛友微信交流群
非常感谢,写论文正好需要~~~谢谢呀

使用道具

7
Enthuse 发表于 2011-2-24 22:56:38 |只看作者 |坛友微信交流群
let me take a look... thanks...

使用道具

8
philonjufan 发表于 2017-8-19 20:14:02 |只看作者 |坛友微信交流群
非常感谢啊,很好的书

使用道具

9
jjxm20060807 发表于 2017-8-20 09:39:29 |只看作者 |坛友微信交流群
谢谢分享

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-6 05:13