楼主: qiuzhiwuxian
16477 7

[问答] spss中如何选择合适的时间序列预测模型 [推广有奖]

  • 0关注
  • 0粉丝

小学生

92%

还不是VIP/贵宾

-

威望
0
论坛币
216 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
122 点
帖子
11
精华
0
在线时间
6 小时
注册时间
2005-11-30
最后登录
2022-6-16

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

请教精通spss中时间序列的人:

我想用spss做时间序列预测,根据历史数据生成了时间序列图(呈现波形),想请教如何判断时间序列图是否平稳, 用什么判断?想运用ARMR模型预测,请问AR和MR中的参数是怎么确定的?

刚刚接触时间序列预测,请多指教,谢谢!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:时间序列预测 预测模型 时间序列 SPSS PSS 时间 预测 模型 SPSS 序列

回帖推荐

bakoll 发表于8楼  查看完整内容

这里针对两个问题做一下回答:判断是否平稳,分析-预测-序列图,看是否有长期上升或者下降趋势,若有则不平稳,看是否存在规律性的高点或低点,若有则存在季节周期性不平稳,而平稳的特征是围绕一个均值上下均匀波动,还可以通过分析--预测--自相关图,来观察,平稳的特征是自相关图迅速下降到零,且在零附近波动并收敛到零,还可以用单位根来检验平稳性。 arima的p,d,q的确定是一个逐渐完善的过程,需要不断修正,ARMA(p q)模 ...

hanszhu 发表于2楼  查看完整内容

Time Series Analysis http://www2.chass.ncsu.edu/garson/pa765/time.htm Identification of ARIMA parameters: Autoregressive component (p). Usually 0, 1, or 2, A value of p=0 means the raw data have no autocorrelation, p=1 means current observations of the series are correlated with themselves at lag 1 (the most common situation), p=2 means correlation at lag 2 also, and so on. An autoregr ...

本帖被以下文库推荐

沙发
hanszhu 发表于 2006-5-17 05:40:00 |只看作者 |坛友微信交流群

Time Series Analysis


http://www2.chass.ncsu.edu/garson/pa765/time.htm

Identification of ARIMA parameters:

  • Autoregressive component (p). Usually 0, 1, or 2, A value of p=0 means the raw data have no autocorrelation, p=1 means current observations of the series are correlated with themselves at lag 1 (the most common situation), p=2 means correlation at lag 2 also, and so on. An autoregressive component of p = 2 thus means that the dependent (the time series value) is affected by the preceding two values, xt-1 and xt-2 independently.

  • Integrated component (d). Usually 0, 1, or 2. The d (integrated) component is simply 0 if the raw data are stationary to begin with, 1 if there is a linear trend (the usual case), or 2 if there is a quadratic trend. Higher positive values are possible but very rarely useful. An ARIMA (0,1,0) model is a random walk model in which differencing can be used to remove the linear trend but the remaining variation cannot be explained either on an autoregressive nor on a moving average basis.

  • Moving average component (q). Usually 0, 1, or 2. A value of q=0 means there are no shocks in the series and the series is purely an autoregressive one. A setting of q=1 means current observations are correlated with shocks at lag 1, q=2 means they are correlated with shocks at lag 2, and so on. Normally the researcher will set either p or q to a positive value but not both as that may cause overfitting the solution to noise in the data.

    The values of the p and q parameters may be inferred by looking at autocorrelation and partial autocorrelation functions as discussed below.

  • Constants: When d=0 there is usually a constant term equal to the mean of the time series. When d=1 there is usually a constant term reflecting the non-zero average trend. When d=2 there is normally no constant; if a constant is added, then it reflects the value of the "trend in the trend."

  • There can also be components reflecting continuous variables entered as independents in the ARIMA model.

Autocorrelation and partial autocorrelation functions (ACF and PACF) can also be used to estimate p and q. Specifically, ACF and PACF plots plot deviations from zero autocorrelation by time period: the larger the positive or negative autocorrelation for a period, the longer the plot line to the right (positive) or left (negative) of zero. ACF and PACF are obtained in SPSS under Graphs/Time Series/Autocorrelations.

  • Autoregressive models. AR models are indicated when PACF cuts off sharply at lag x but ACF declines slowly. To determine tentatively the value of p, look at the PACF plot and determine the highest lag at which the PACF is significant.

  • Moving average models. MA models are indicated by a rapidly declining ACF and PACF. If the ACF does not decline slowly but rather cuts off sharply at lag x, this is suggests setting q=x, thereby adding a moving average component. If autocorrelation is negative at lag-1 then this also indicates the need for an MA (q) term higher than 0.

Other rules of thumb:

  • ARIMA (p,0,0): ACF is spiked at lag p and declines toward 0. PACF is spiked at lag 1 to lag p.
  • ARIMA (0,1,0): Random walk model. The only effect is a non-seasonal differencing to remove a linear trend. ACF is either constant or is balanced between positive and negative. PACF is spiked only at lag 1.
  • ARIMA (1,1,0): First-order autoregressive model. There is non-seasonal differencing to remove a linear trend, and lagging the dependent variable by 1.
  • ARIMA (0,1,1): Simple exponential smoothing model. There is non-seasonal differencing to remove a linear trend, and lagging shock effects by 1.
  • ARIMA (0,0,p): ACF is spiked at lags 1 to p, declining sharply thereafter to 0. PACF is spiked at lags 1 to p, declining more slowly toward 0.
  • ARIMA (p,0,q): ACF and PACF both decline slowly toward 0. PACF declines erratically due to shock effects.
  • ARIMA (1,1,1): A mixed model. Warning: normally one does not include both autoregressive effects and moving average effects in the same model because this may lead to overfitting the data to noise, and may reduce the reliability of interpretation of the significance of individual components in the model.

As a rule of thumb, one may wish to start with p=1 and/or q=1 and then increase the p and/or q values if the ACF and PACF for the residuals display spiking.

使用道具

藤椅
spring109 发表于 2006-10-22 20:30:00 |只看作者 |坛友微信交流群

I have learned the method.Thanks

使用道具

板凳
tqy395 发表于 2011-6-3 20:45:07 |只看作者 |坛友微信交流群
没有中文吗,英文有点差

使用道具

报纸
yihanabc 发表于 2012-3-25 15:53:18 |只看作者 |坛友微信交流群
我搜到一篇专门讲时间序列分析怎么选择模型的文章,觉得不错,分享下~http://dlib.edu.cnki.net/kns50/d ... ename=2006072594.nh(知网的文档不能上传啊……)

使用道具

地板
zhangjunxia0720 发表于 2012-9-10 13:29:38 |只看作者 |坛友微信交流群
在SPSS中如何对时间序列数据进行预测

使用道具

7
zhangjunxia0720 发表于 2012-9-10 13:35:21 |只看作者 |坛友微信交流群
看波动有没有趋势,若有就不平稳

使用道具

8
bakoll 发表于 2015-5-18 09:50:37 |只看作者 |坛友微信交流群
这里针对两个问题做一下回答:判断是否平稳,分析-预测-序列图,看是否有长期上升或者下降趋势,若有则不平稳,看是否存在规律性的高点或低点,若有则存在季节周期性不平稳,而平稳的特征是围绕一个均值上下均匀波动,还可以通过分析--预测--自相关图,来观察,平稳的特征是自相关图迅速下降到零,且在零附近波动并收敛到零,还可以用单位根来检验平稳性。
arima的p,d,q的确定是一个逐渐完善的过程,需要不断修正,ARMA(p q)模型中模型参数的设定主要依靠自相关函数AC和偏自相关函数pac,自回归过程AR的参数主要看PAC在哪一阶截尾,如在4阶截尾则参数P=4,同理对于q的确定,也可以通过专家建模器进行筛选,然后通过不断调整参数的值比较模型拟合检验BIC等拟合优度来最终确定参数。

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-6 03:40