楼主: 人工智能-AI
782 0

基于深度学习的口服生物利用度分类研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-16 22:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对采用传统方法测量口服生物利用度(OB)代价昂贵、花费周期长,而现有的一些机器学习方法对其预测精度较低的问题,提出了一种基于栈式自编码(SAE)神经网络的口服生物利用度分类方法,利用经筛选过的分子特征结合栈式自编码模型对生物利用度进行分类。实验表明,与浅层机器学习模型支持向量机(SVM)以及人工神经网络(ANN)相比,深度网络对化合物分子的特征有更本质的学习,采用经筛选过的2D和3D分子特征组合对人体口服生物利用度的分类效果较好,其平均预测精度为83%,灵敏度(SE)为94%,特异性(SP)为49%。

原文链接:http://www.cqvip.com//QK/92817X/201604/668952573.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:深度学习 学习的 人工神经网络 cqvip 支持向量机 口服生物利用度 深度学习 分子描述符 栈式自编码 softmax回归

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 23:59