楼主: epoh
12848 37

[Chemometrics]Introduction to Multivariate Statistical Analysis in Chemometrics [推广有奖]

教授

67%

还不是VIP/贵宾

-

威望
3
论坛币
12137 个
通用积分
313.0612
学术水平
3210 点
热心指数
3229 点
信用等级
3122 点
经验
8908 点
帖子
1637
精华
0
在线时间
8 小时
注册时间
2006-11-26
最后登录
2018-10-13

楼主
epoh 发表于 2009-12-10 14:39:32 |只看作者 |坛友微信交流群|倒序 |AI写论文
相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Book:Introduction to Multivariate Statistical Analysis in Chemometrics
Author:Varmuza, Kurt/ Filzmoser, Peter
Publisher:CRC Press
Contents:
Chapter 1 Introduction
1.1 Chemoinformatics–Chemometrics–Statistics
1.2 This Book
1.3 Historical Remarks about Chemometrics
1.4 Bibliography
1.5 Starting Examples
1.5.1 Univariate versus Bivariate Classification
1.5.2 Nitrogen Content of Cereals Computed from NIR Data
1.5.3 Elemental Composition of Archaeological Glasses
1.6 Univariate Statistics—A Reminder
1.6.1 Empirical Distributions
1.6.2 Theoretical Distributions
1.6.3 Central Value
1.6.4 Spread
1.6.5 Statistical Tests
References
Chapter 2 Multivariate Data
2.1 Definitions
2.2 Basic Preprocessing
2.2.1 Data Transformation
2.2.2 Centering and Scaling
2.2.3 Normalization
2.2.4 Transformations for Compositional Data
2.3 Covariance and Correlation
2.3.1 Overview
2.3.2 Estimating Covariance and Correlation
2.4 Distances and Similarities
2.5 Multivariate Outlier Identification
2.6 Linear Latent Variables
2.6.1 Overview
2.6.2 Projection and Mapping
2.6.3 Example
2.7 Summary
References
Chapter 3 Principal Component Analysis
3.1 Concepts
3.2 Number of PCA Components
3.3 Centering and Scaling
3.4 Outliers and Data Distribution
3.5 Robust PCA
3.6 Algorithms for PCA
3.6.1 Mathematics of PCA
3.6.2 Jacobi Rotation
3.6.3 Singular Value Decomposition
3.6.4 NIPALS
3.7 Evaluation and Diagnostics
3.7.1 Cross Validation for Determination of the Number
of Principal Components
3.7.2 Explained Variance for Each Variable
3.7.3 Diagnostic Plots
3.8 Complementary Methods for Exploratory Data Analysis
3.8.1 Factor Analysis
3.8.2 Cluster Analysis and Dendrogram
3.8.3 Kohonen Mapping
3.8.4 Sammon’s Nonlinear Mapping
3.8.5 Multiway PCA
3.9 Examples
3.9.1 Tissue Samples from Human Mummies
and Fatty Acid Concentrations
3.9.2 Polycyclic Aromatic Hydrocarbons in Aerosol
3.10 Summary
References
Chapter 4 Calibration
4.1 Concepts
4.2 Performance of Regression Models
4.2.1 Overview
4.2.2 Overfitting and Underfitting
4.2.3 Performance Criteria
4.2.4 Criteria for Models with Different Numbers of Variables
4.2.5 Cross Validation
4.2.6 Bootstrap
4.3 Ordinary Least-Squares Regression
4.3.1 Simple OLS
4.3.2 Multiple OLS
4.3.2.1 Confidence Intervals and Statistical Tests in OLS
4.3.2.2 Hat Matrix and Full Cross Validation in OLS
4.3.3 Multivariate OLS
4.4 Robust Regression
4.4.1 Overview
4.4.2 Regression Diagnostics
4.4.3 Practical Hints
4.5 Variable Selection
4.5.1 Overview
4.5.2 Univariate and Bivariate Selection Methods
4.5.3 Stepwise Selection Methods
4.5.4 Best-Subset Regression
4.5.5 Variable Selection Based on PCA or PLS Models
4.5.6 Genetic Algorithms
4.5.7 Cluster Analysis of Variables
4.5.8 Example
4.6 Principal Component Regression
4.6.1 Overview
4.6.2 Number of PCA Components
4.7 Partial Least-Squares Regression
4.7.1 Overview
4.7.2 Mathematical Aspects
4.7.3 Kernel Algorithm for PLS
4.7.4 NIPALS Algorithm for PLS
4.7.5 SIMPLS Algorithm for PLS
4.7.6 Other Algorithms for PLS
4.7.7 Robust PLS
4.8 Related Methods
4.8.1 Canonical Correlation Analysis
4.8.2 Ridge and Lasso Regression
4.8.3 Nonlinear Regression
4.8.3.1 Basis Expansions
4.8.3.2 Kernel Methods
4.8.3.3 Regression Trees
4.8.3.4 Artificial Neural Networks
4.9 Examples
4.9.1 GC Retention Indices of Polycyclic
Aromatic Compounds
4.9.1.1 Principal Component Regression
4.9.1.2 Partial Least-Squares Regression
4.9.1.3 Robust PLS
4.9.1.4 Ridge Regression
4.9.1.5 Lasso Regression
4.9.1.6 Stepwise Regression
4.9.1.7 Summary
4.9.2 Cereal Data
4.10 Summary
References
Chapter 5 Classification
5.1 Concepts
5.2 Linear Classification Methods
5.2.1 Linear Discriminant Analysis
5.2.1.1 Bayes Discriminant Analysis
5.2.1.2 Fisher Discriminant Analysis
5.2.1.3 Example
5.2.2 Linear Regression for Discriminant Analysis
5.2.2.1 Binary Classification
5.2.2.2 Multicategory Classification with OLS
5.2.2.3 Multicategory Classification with PLS
5.2.3 Logistic Regression
5.3 Kernel and Prototype Methods
5.3.1 SIMCA
5.3.2 Gaussian Mixture Models
5.3.3 k-NN Classification
5.4 Classification Trees
5.5 Artificial Neural Networks
5.6 Support Vector Machine
5.7 Evaluation
5.7.1 Principles and Misclassification Error
5.7.2 Predictive Ability
5.7.3 Confidence in Classification Answers
5.8 Examples
5.8.1 Origin of Glass Samples
5.8.1.1 Linear Discriminant Analysis
5.8.1.2 Logistic Regression
5.8.1.3 Gaussian Mixture Models
5.8.1.4 k-NN Methods
5.8.1.5 Classification Trees
5.8.1.6 Artificial Neural Networks
5.8.1.7 Support Vector Machines
5.8.1.8 Overall Comparison
5.8.2 Recognition of Chemical Substructures from Mass Spectra
5.9 Summary
References
Chapter 6 Cluster Analysis
6.1 Concepts
6.2 Distance and Similarity Measures
6.3 Partitioning Methods
6.4 Hierarchical Clustering Methods
6.5 Fuzzy Clustering
6.6 Model-Based Clustering
6.7 Cluster Validity and Clustering Tendency Measures
6.8 Examples
6.8.1 Chemotaxonomy of Plants
6.8.2 Glass Samples
6.9 Summary
References
Chapter 7 Preprocessing
7.1 Concepts
7.2 Smoothing and Differentiation
7.3 Multiplicative Signal Correction
7.4 Mass Spectral Features
7.4.1 Logarithmic Intensity Ratios
7.4.2 Averaged Intensities of Mass Intervals
7.4.3 Intensities Normalized to Local Intensity Sum
7.4.4 Modulo-14 Summation
7.4.5 Autocorrelation
7.4.6 Spectra Type
7.4.7 Example
References
Appendix 1 Symbols and Abbreviations
Appendix 2 Matrix Algebra
A.2.1 Definitions
A.2.2 Addition and Subtraction of Matrices
A.2.3 Multiplication of Vectors
A.2.4 Multiplication of Matrices
A.2.5 Matrix Inversion
A.2.6 Eigenvectors
A.2.7 Singular Value Decomposition
References
Appendix 3 Introduction to R
A.3.1 General Information on R
A.3.2 Installing R
A.3.3 Starting R
A.3.4 Working Directory
A.3.5 Loading and Saving Data
A.3.6 Important R Functions
A.3.7 Operators and Basic Functions
Mathematical and Logical Operators, Comparison
Special Elements
Mathematical Functions
Matrix Manipulation
Statistical Functions
A.3.8 Data Types
Missing Values
A.3.9 Data Structures
A.3.10 Selection and Extraction from Data Objects
Examples for Creating Vectors
Examples for Selecting Elements from a Vector or Factor
Examples for Selecting Elements from a Matrix, Array,
or Data Frame
Examples for Selecting Elements from a List..
A.3.11 Generating and Saving Graphics
Functions Relevant for Graphics
Relevant Plot Parameters
Statistical Graphics
Saving Graphic Output
References

       Introduction to Multivariate Statistical Analysis in Chemometrics.pdf (10.8 MB)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Chemometrics Multivariate introduction Statistical multivariat Analysis Multivariate Statistical introduction Chemometrics

已有 4 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
ltx5151 + 20 + 20 根据规定进行奖励
kk22boy + 5 + 5 + 5 好人,不解释
Sunknownay + 100 + 50 + 3 + 3 + 3 精彩帖子
yahoocom + 80 精彩帖子

总评分: 经验 + 120  论坛币 + 150  学术水平 + 8  热心指数 + 8  信用等级 + 8   查看全部评分

本帖被以下文库推荐

沙发
tmdxyz 发表于 2009-12-11 09:13:07 |只看作者 |坛友微信交流群
谢谢楼主。虽然我有这本书,不过还是顶一下!

使用道具

藤椅
tanguangguo 发表于 2009-12-11 11:51:23 |只看作者 |坛友微信交流群
谢谢,楼主!好书!

使用道具

板凳
shenliang 发表于 2009-12-13 14:09:31 |只看作者 |坛友微信交流群
太感谢楼主的无私奉献了,谢谢

使用道具

报纸
southmm 发表于 2009-12-15 18:17:53 |只看作者 |坛友微信交流群
R应用越来越广了.

使用道具

地板
yinjj 发表于 2009-12-16 07:56:14 |只看作者 |坛友微信交流群
好书呀!谢谢分享!

使用道具

7
esir 发表于 2009-12-21 07:16:55 |只看作者 |坛友微信交流群
好书!顶一下!

使用道具

8
edogawaconan 发表于 2010-9-29 11:45:42 |只看作者 |坛友微信交流群
好书!顶一下!

使用道具

9
m8843620 发表于 2011-5-27 13:24:30 |只看作者 |坛友微信交流群
謝謝樓主的分享

使用道具

10
杨花点点 发表于 2011-6-8 18:58:19 |只看作者 |坛友微信交流群
楼主是好人,谢谢~~

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 14:37