在进行倾向得分匹配(PSM)时,协变量的选择对于模型的有效性和结果的可靠性至关重要。理想情况下,协变量应满足两个主要目的:一是减少选择偏差;二是提高样本之间的可比性。
### 协变量选择标准:
1. **影响处理分配的因素**:理论上,协变量应该是那些预测一个单位(例如企业)接受处理(如税收优惠)概率的因子。这样可以确保匹配组在这些可能影响处理分配的变量上是均衡的,从而减少选择偏差。
2. **潜在的影响结果的因素**:同时,也应考虑与结果变量(创新能力)相关的协变量,因为这些变量也可能间接地影响处理效应的估计。通过控制这些变量,我们可以更准确地评估处理效应的净效果。
### 例子解析:
在你提到的例子中,“税收优惠对企业创新能力的影响”研究,理想的选择应该是同时包含**(1)和(2)两部分因素**:
- (1)**影响企业创新能力的因素**:如研发投入、员工教育水平等。这些是直接影响结果变量的因子。
- (2)**影响获得税收优惠的概率的因素**:包括企业的规模、行业类型、过往财务表现等。这些因素可能同时影响企业是否能获得税收优惠以及其创新潜力。
### 逻辑回归系数解析:
如果选择了(1),即主要关注那些直接与结果相关的协变量,这确实会淡化逻辑回归中处理分配概率的预测能力。但是,在PSM方法下,关键在于通过匹配或加权等技术使比较组在这些协变量上达到均衡,而不是评估这些协变量对处理分配的概率贡献。
如果选择了(2),即主要关注影响处理分配的因素,则可能有助于更精确地平衡两组间的已知差异,从而减少选择偏差。但这并不意味着可以忽视那些直接影响结果的因子。
### 总结:
在实际操作中,理想的PSM模型应该综合考虑与处理效应相关的所有重要因素,包括但不限于那些既预测了处理变量也影响到结果变量的因素。这样做的目的是为了尽可能地平衡比较组之间的已知差异,从而获得更可靠的因果效应估计。
此文本由CAIE学术大模型生成,添加下方二维码,优先体验功能试用