楼主: baiwei1637124
7273 14

[书籍介绍] Hands-On Markov Models with Python(True PDF) [推广有奖]

  • 13关注
  • 4粉丝

教授

5%

还不是VIP/贵宾

-

威望
0
论坛币
13692 个
通用积分
103.8508
学术水平
9 点
热心指数
13 点
信用等级
9 点
经验
111072 点
帖子
942
精华
0
在线时间
1311 小时
注册时间
2012-8-1
最后登录
2024-10-22

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Hands-On Markov Models with Python——Implement probabilistic models for learning complex data sequences using the Python ecosystem
简介:Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs.
In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.
By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:models Markov python Hands model

6.jpg (281.44 KB)

6.jpg

5.jpg (21.98 KB)

5.jpg

4.jpg (46.27 KB)

4.jpg

3.jpg (49.13 KB)

3.jpg

2.jpg (57.49 KB)

2.jpg

1.jpg (38.69 KB)

1.jpg

Hands-On Markov Models with Python.pdf

13.52 MB

需要: 5 个论坛币  [购买]

已有 1 人评分经验 学术水平 热心指数 信用等级 收起 理由
yunnandlg + 40 + 3 + 3 + 3 精彩帖子

总评分: 经验 + 40  学术水平 + 3  热心指数 + 3  信用等级 + 3   查看全部评分

本帖被以下文库推荐

沙发
齐物论pi 学生认证  发表于 2019-1-24 11:38:10 来自手机 |只看作者 |坛友微信交流群
这本书哪一年出版的?

使用道具

藤椅
baiwei1637124 学生认证  发表于 2019-1-24 13:13:14 |只看作者 |坛友微信交流群
齐物论pi 发表于 2019-1-24 11:38
这本书哪一年出版的?
2018年~

使用道具

板凳
eeabcde 发表于 2019-1-25 08:35:02 |只看作者 |坛友微信交流群
感谢分享

使用道具

报纸
Tony_Liu 在职认证  发表于 2019-1-25 09:17:26 |只看作者 |坛友微信交流群
看看 谢谢

使用道具

地板
jiaminZ 发表于 2019-1-26 23:48:22 来自手机 |只看作者 |坛友微信交流群
baiwei1637124 发表于 2019-1-23 15:06
Hands-On Markov Models with Python——Implement probabilistic models for learning complex data seque ...
支持一下

使用道具

7
phipe 发表于 2019-2-1 23:40:03 |只看作者 |坛友微信交流群
谢谢分享

使用道具

8
yunnandlg 在职认证  学生认证  发表于 2019-2-2 11:32:21 |只看作者 |坛友微信交流群
What this book covers:
[tongue]
Chapter 1, Introduction to Markov Process, starts with a discussion of basic probability theory, and then introduces Markov chains. The chapter also talks about the different types of Markov chain classifying based on continuous or discrete states and time intervals.

Chapter 2, Hidden Markov Models, builds on the concept of Markov processes and DBNs tointroduce the concepts of the HMM.

Chapter 3, State Inference – Predicting the States, introduces algorithms that can be used to predict the states of a defined HMM. The chapter introduces the Forward algorithm, the backward algorithm, the forward-backward algorithm, and the Viterbi algorithm.

Chapter 4, Parameter Inference Using Maximum Likelihood, discusses the basics of maximum likelihood learning. The chapter then moves on to applying maximum likelihood learning in the case of HMMs and introduces the Viterbi learning algorithm and Baum-Welch algorithm.


Chapter 5, Parameter Inference Using Bayesian Approach, starts by introducing the basic concepts of Bayesian learning. The chapter then applies these concepts in the case of HMMs and talks about the different approximation methods used for learning using the Bayesian method.


Chapter 6, Time Series Predicting, discusses the application of HMMs in the case of time series data. The chapter takes the example of the variation of stock prices and tries to model it using an HMM.


Chapter 7, Natural Language Processing, discusses the application of HMMs in the field of speech recognition. The chapter discusses two main areas of application: part-of-speech tagging and speech recognition.


Chapter 8, 2D HMM for Image Processing, introduces the concept of 2D HMMs and discusses their application in the field of image processing.


Chapter 9, Markov Decision Process, introduces the basic concepts of reinforcement learning and then talks about Markov decision process and introduces the Bellman equation to solve them.





已有 1 人评分学术水平 热心指数 信用等级 收起 理由
宽客老丁 + 1 + 1 + 1 精彩帖子

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

使用道具

9
yunnandlg 在职认证  学生认证  发表于 2019-2-2 11:38:45 |只看作者 |坛友微信交流群
齐物论pi 发表于 2019-1-24 11:38
这本书哪一年出版的?
First published: September 2018

使用道具

10
宽客老丁 发表于 2019-2-2 11:52:38 |只看作者 |坛友微信交流群
That is very good! Thanks!
已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
yunnandlg + 100 + 20 + 5 + 5 + 5 精彩帖子

总评分: 经验 + 100  论坛币 + 20  学术水平 + 5  热心指数 + 5  信用等级 + 5   查看全部评分

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 14:53