暨南大学2019年数学分析709考研试题
1、解
$\displaystyle \because |R|=|\frac{n(n+1)}{(n+1)(n+2)}|=1,$
$\therefore -1< x< 1.$
$S_n=\sum_{k=1}^{n}k(k+1)x^k= (1\cdot 2)x+ (2\cdot 3)x^2+\cdots + (n\cdot (n+1))x^n.$
$xS_n=(1\cdot 2)x^2+ (2\cdot 3)x^3+\cdots + ((n-1)\cdot n)x^n+(n\cdot (n+1))x^{n+1}.$
$\therefore S_n-xS_n=(1\cdot 2)x-(n\cdot (n+1))x^{n+1}.$
$xS_n-x^2S_n=2x^2+4x^4+\cdots +2(n-1)x^n+2nx^{n+1}-(n\cdot (n+1))x^{n+1}.$
$\begin{align*}(1-x)^2S_n&=2x+2x^2+2x^4+\cdots +2x^n+2nx^{n+1}-(n\cdot (n+1))x^{n+1}\\&=\frac{2(x-x^n)}{x-x}+2nx^{n+1}-(n\cdot (n+1))x^{n+1}.\\\end{align*}$
$\displaystyle \because \lim_{n \to \infty }2nx^{n+1}=0,\lim_{n \to \infty }(n\cdot (n+1))x^{n+1}=0,$
$\displaystyle \therefore S=\lim_{n \to \infty }S_n=\frac{2x}{(1-x)^3}.$
2、解:
$a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nxdx=\frac{1}{\pi}\int_{-\pi}^{0}(-1)\cos nxdx+\frac{1}{\pi}\int_{0}^{\pi}1\cdot \cos nxdx=0.(n=0,1,2\cdots )$
$b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nxdx=\frac{1}{\pi}\int_{-\pi}^{0}(-1)\sin nxdx+\frac{1}{\pi}\int_{0}^{\pi}1\cdot \sin nxdx=\frac{2}{n\pi}(1-(-1)^n)=\begin{cases}
\frac{4}{n\pi} ,& n=1,3,5,\cdots \\
0,& n=2,4,6,\cdots
\end{cases}$
$\displaystyle \therefore f(x)=\frac{4}{\pi}(\sin x+\frac{1}{3}\sin 3x+\cdots +\frac{1}{2k-1}\sin(2k-1)x+\cdots )=\frac{4}{\pi}\sum_{k=1}^{\infty }\frac{1}{2k-1}\sin (2k-1)x,(-\infty < x< +\infty ;x\neq 0,\pm \pi,\pm 2\pi,\cdots )$