楼主: 111hghero
1736 2

[经济学方法论] Mathematical Modeling in Economics and Finance [推广有奖]

  • 0关注
  • 0粉丝

初中生

38%

还不是VIP/贵宾

-

威望
0
论坛币
1298 个
通用积分
0.7343
学术水平
0 点
热心指数
5 点
信用等级
5 点
经验
12086 点
帖子
3
精华
0
在线时间
26 小时
注册时间
2010-1-20
最后登录
2024-8-29

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations (AMS/MAA Textbooks)Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.


Contents
Preface iii
1 Background Ideas 1
1.1 Brief History of Mathematical Finance . . . . . . . . . . . . . 1
1.2 Options and Derivatives . . . . . . . . . . . . . . . . . . . . . 11
1.3 Speculation and Hedging . . . . . . . . . . . . . . . . . . . . . 19
1.4 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . 32
1.6 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . 57
1.8 A Model of Collateralized Debt Obligations . . . . . . . . . . 66
2 Binomial Option Pricing Models 77
2.1 Single Period Binomial Models . . . . . . . . . . . . . . . . . . 77
2.2 Multiperiod Binomial Tree Models . . . . . . . . . . . . . . . 88
3 First Step Analysis for Stochastic Processes 101
3.1 A Coin Tossing Experiment . . . . . . . . . . . . . . . . . . . 101
3.2 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3 Duration of the Gambler’s Ruin . . . . . . . . . . . . . . . . 133
3.4 A Stochastic Process Model of Cash Management . . . . . . . 148
4 Limit Theorems for Stochastic Processes 171
4.1 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . 171
4.2 Moment Generating Functions . . . . . . . . . . . . . . . . . . 179
4.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . 186
4.4 The Absolute Excess of Heads over Tails . . . . . . . . . . . . 200
xiii
xiv CONTENTS
5 Brownian Motion 213
5.1 Intuitive Introduction to Diffusions . . . . . . . . . . . . . . . 213
5.2 The Definition of Brownian Motion and the Wiener Process . 220
5.3 Approximation of Brownian Motion by Coin-Flipping Sums . . 235
5.4 Transformations of the Wiener Process . . . . . . . . . . . . . 244
5.5 Hitting Times and Ruin Probabilities . . . . . . . . . . . . . . 254
5.6 Path Properties of Brownian Motion . . . . . . . . . . . . . . 264
5.7 Quadratic Variation of the Wiener Process . . . . . . . . . . . 272
6 Stochastic Calculus 287
6.1 Stochastic Differential Equations and the Euler-Maruyama Method287
6.2 Itˆo’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.3 Properties of Geometric Brownian Motion . . . . . . . . . . . 308
6.4 Models of Stock Market Prices . . . . . . . . . . . . . . . . . . 320
6.5 Monte Carlo Simulation of Option Prices . . . . . . . . . . . . 335
7 The Black-Scholes Model 359
7.1 Derivation of the Black-Scholes Equation . . . . . . . . . . . . 359
7.2 Solution of the Black-Scholes Equation . . . . . . . . . . . . . 366
7.3 Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.4 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 395
7.5 Sensitivity, Hedging and the “Greeks” . . . . . . . . . . . . . . 405
7.6 Limitations of the Black-Scholes Model . . . . . . . . . . . . . 419

Mathematical Modelingin Economics and Financewith Probability and Stochastic Processes.pdf (3.56 MB, 需要: 10 个论坛币)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


已有 1 人评分热心指数 信用等级 收起 理由
h2h2 + 5 + 5 精彩帖子

总评分: 热心指数 + 5  信用等级 + 5   查看全部评分

沙发
jjxm20060807 发表于 2019-9-18 22:57:42 |只看作者 |坛友微信交流群
谢谢分享

使用道具

藤椅
三江鸿 发表于 2022-3-12 14:50:50 来自手机 |只看作者 |坛友微信交流群
感谢分享新书

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 18:38