Contents
Preface iii
1 Background Ideas 1
1.1 Brief History of Mathematical Finance . . . . . . . . . . . . . 1
1.2 Options and Derivatives . . . . . . . . . . . . . . . . . . . . . 11
1.3 Speculation and Hedging . . . . . . . . . . . . . . . . . . . . . 19
1.4 Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . 32
1.6 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.7 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . 57
1.8 A Model of Collateralized Debt Obligations . . . . . . . . . . 66
2 Binomial Option Pricing Models 77
2.1 Single Period Binomial Models . . . . . . . . . . . . . . . . . . 77
2.2 Multiperiod Binomial Tree Models . . . . . . . . . . . . . . . 88
3 First Step Analysis for Stochastic Processes 101
3.1 A Coin Tossing Experiment . . . . . . . . . . . . . . . . . . . 101
3.2 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3 Duration of the Gambler’s Ruin . . . . . . . . . . . . . . . . 133
3.4 A Stochastic Process Model of Cash Management . . . . . . . 148
4 Limit Theorems for Stochastic Processes 171
4.1 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . 171
4.2 Moment Generating Functions . . . . . . . . . . . . . . . . . . 179
4.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . 186
4.4 The Absolute Excess of Heads over Tails . . . . . . . . . . . . 200
xiii
xiv CONTENTS
5 Brownian Motion 213
5.1 Intuitive Introduction to Diffusions . . . . . . . . . . . . . . . 213
5.2 The Definition of Brownian Motion and the Wiener Process . 220
5.3 Approximation of Brownian Motion by Coin-Flipping Sums . . 235
5.4 Transformations of the Wiener Process . . . . . . . . . . . . . 244
5.5 Hitting Times and Ruin Probabilities . . . . . . . . . . . . . . 254
5.6 Path Properties of Brownian Motion . . . . . . . . . . . . . . 264
5.7 Quadratic Variation of the Wiener Process . . . . . . . . . . . 272
6 Stochastic Calculus 287
6.1 Stochastic Differential Equations and the Euler-Maruyama Method287
6.2 Itˆo’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.3 Properties of Geometric Brownian Motion . . . . . . . . . . . 308
6.4 Models of Stock Market Prices . . . . . . . . . . . . . . . . . . 320
6.5 Monte Carlo Simulation of Option Prices . . . . . . . . . . . . 335
7 The Black-Scholes Model 359
7.1 Derivation of the Black-Scholes Equation . . . . . . . . . . . . 359
7.2 Solution of the Black-Scholes Equation . . . . . . . . . . . . . 366
7.3 Put-Call Parity . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.4 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . 395
7.5 Sensitivity, Hedging and the “Greeks” . . . . . . . . . . . . . . 405
7.6 Limitations of the Black-Scholes Model . . . . . . . . . . . . . 419