楼主: WHAND
1863 2

[资料共享] AHP | 层次分析法原理及Python实现 [推广有奖]

  • 0关注
  • 5粉丝

硕士生

99%

还不是VIP/贵宾

-

威望
0
论坛币
3624 个
通用积分
57.5598
学术水平
5 点
热心指数
5 点
信用等级
5 点
经验
2596 点
帖子
54
精华
0
在线时间
329 小时
注册时间
2017-9-13
最后登录
2024-11-4

楼主
WHAND 学生认证  发表于 2020-2-25 13:21:52 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<!-- markdown css tag --><div class="pinggu_markdown">
<div class="pinggu_markdown__html"><h1 id="ahp--层次分析法原理及python实现">AHP | 层次分析法原理及Python实现</h1>
<blockquote>
<p><strong>层次分析法</strong>(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于2&#48;世纪7&#48;年代中期提出,用于<strong>确定评价模型中各评价因子/准则的权重,进一步选择最优方案</strong>。该方法仍具有<strong>较强的主观性</strong>,判断/比较矩阵的构造在一定程度上是拍脑门决定的,一致性检验只是检验拍脑门有没有自相矛盾得太离谱。</p>
</blockquote>
<p>[TOC]</p>
<h4 id="目录">目录</h4>
<p><strong>1. AHP模型构建</strong></p>
<p><strong>2. AHP单排序</strong></p>
<p>  2.1. 构造判断/比较矩阵</p>
<p>  2.2. 计算因子/准则权重</p>
<p>  2.3. 一致性检验</p>
<p><strong>3. AHP总排序</strong></p>
<p>参考文献</p>
<h2 id="ahp模型构建">1. AHP模型构建</h2>
<p>在深入分析问题的基础上,将决策的目标、考虑的因素和决策对象按相关关系分为最高层、中间层和最低层。</p>
<ul>
<li><strong>最高层</strong>:决策的目的、要解决的问题</li>
<li><strong>中间层</strong>:主因素,考虑的因素、决策的准则</li>
<li><strong>最低层</strong>:决策时的备选方案,也可为中间层的子因素</li>
</ul>
<p><u>层次分析法的多级递阶层次模型分为三类</u>:完全相关性结构(上层每一因素与下层所有因素均有联系)、完全独立性结构(上层每一因素都有独立的下层要素)、混合型结构(前述两种结构的混合结构)。本例为完全独立性结构,如下图。</p>
<p><img src="https://upload-images.jianshu.io/upload_images/2&#48;447423-6f9b7118ae46247c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/124&#48;" alt=""></p>
<h2 id="ahp单排序">2. AHP单排序</h2>
<p>层次分析法涉及多层次的因素打分与赋权,首先针对中间层的主因素进行AHP单排序。</p>
<h3 id="构造判断比较矩阵">2.1. 构造判断/比较矩阵</h3>
<p>通过各因素之间的<strong>两两比较</strong>确定合适的标度:<u>将不同因素(因素 <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.65952em; vertical-align: &#48;em;"></span><span class="mord mathit">i</span></span></span></span></span>与 因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.85396em; vertical-align: -&#48;.19444em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span>)两两作比获得的值<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding="application/x-tex">a_{ij}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>  填入到矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>的<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.65952em; vertical-align: &#48;em;"></span><span class="mord mathit">i</span></span></span></span></span>行<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.85396em; vertical-align: -&#48;.19444em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span>列的位置,成对比较矩阵中的取值可<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding="application/x-tex">a_{ij}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>参考Satty的提议</u>,如下表所示。</p>
<p><img src="https://upload-images.jianshu.io/upload_images/2&#48;447423-cfdc44879a1896e6.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/124&#48;" alt=""></p>

<table>
<thead>
<tr>
<th align="center">因素i比因素j</th>
<th align="center">分值</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">同等重要</td>
<td align="center">1</td>
</tr>
<tr>
<td align="center">稍微重要</td>
<td align="center">3</td>
</tr>
<tr>
<td align="center">较强重要</td>
<td align="center">5</td>
</tr>
<tr>
<td align="center">强烈重要</td>
<td align="center">7</td>
</tr>
<tr>
<td align="center">极端重要</td>
<td align="center">9</td>
</tr>
<tr>
<td align="center">两相邻判断的中间值</td>
<td align="center">2,4,6,8</td>
</tr>
</tbody>
</table><p>本例的中间层主因素有经济提升、住房改善、保障改善、社区福利、改革参与 心理改善,构建矩阵的如下表所示。对角线上恒定为1, 因为是和自己做比。</p>
<p><img src="https://upload-images.jianshu.io/upload_images/2&#48;447423-&#48;3c&#48;948&#48;33ff47a4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/124&#48;" alt="image.png"></p>

<table>
<thead>
<tr>
<th>评价</th>
<th>经济提升</th>
<th>住房改善</th>
<th>保障改善</th>
<th>社区福利</th>
<th>改革参与</th>
<th>心理改善</th>
</tr>
</thead>
<tbody>
<tr>
<td>经济提升</td>
<td>1</td>
<td>a<sub>12</sub></td>
<td>a<sub>13</sub></td>
<td>a<sub>14</sub></td>
<td>a<sub>15</sub></td>
<td>a<sub>16</sub></td>
</tr>
<tr>
<td>住房改善</td>
<td>a<sub>21</sub></td>
<td>1</td>
<td>a<sub>23</sub></td>
<td>a<sub>24</sub></td>
<td>a<sub>25</sub></td>
<td>a<sub>26</sub></td>
</tr>
<tr>
<td>保障改善</td>
<td>a<sub>31</sub></td>
<td>a<sub>32</sub></td>
<td>1</td>
<td>a<sub>34</sub></td>
<td>a<sub>35</sub></td>
<td>a<sub>36</sub></td>
</tr>
<tr>
<td>社区福利</td>
<td>a<sub>41</sub></td>
<td>a<sub>42</sub></td>
<td>a<sub>43</sub></td>
<td>1</td>
<td>a<sub>45</sub></td>
<td>a<sub>46</sub></td>
</tr>
<tr>
<td>改革参与</td>
<td>a<sub>51</sub></td>
<td>a<sub>52</sub></td>
<td>a<sub>53</sub></td>
<td>a<sub>54</sub></td>
<td>1</td>
<td>a<sub>55</sub></td>
</tr>
<tr>
<td>心理改善</td>
<td>a<sub>61</sub></td>
<td>a<sub>62</sub></td>
<td>a<sub>63</sub></td>
<td>a<sub>64</sub></td>
<td>a<sub>65</sub></td>
<td>1</td>
</tr>
</tbody>
</table><p>对上表进行简化即可获得如下矩阵,该矩阵称为<strong>判断/比较矩阵</strong>:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi><mo>=</mo><mrow><mo fence="true">(</mo><mtable><mtr><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>11</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>12</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>13</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>14</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>15</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>21</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>22</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>23</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>24</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>25</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>31</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>32</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>33</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>34</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>35</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>41</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>42</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>43</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>44</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>45</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>51</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>52</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>53</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>54</mn></msub></mstyle></mtd><mtd><mstyle sc riptlevel="&#48;" displaystyle="false"><msub><mi>a</mi><mn>55</mn></msub></mstyle></mtd></mtr></mtable><mo fence="true">)</mo></mrow></mrow><annotation encoding="application/x-tex">
M=\left(\begin{array}{lllll}
{a_{11}} &amp;amp; {a_{12}} &amp;amp; {a_{13}} &amp;amp; {a_{14}} &amp;amp; {a_{15}} \\
{a_{21}} &amp;amp; {a_{22}} &amp;amp; {a_{23}} &amp;amp; {a_{24}} &amp;amp; {a_{25}} \\
{a_{31}} &amp;amp; {a_{32}} &amp;amp; {a_{33}} &amp;amp; {a_{34}} &amp;amp; {a_{35}} \\
{a_{41}} &amp;amp; {a_{42}} &amp;amp; {a_{43}} &amp;amp; {a_{44}} &amp;amp; {a_{45}} \\
{a_{51}} &amp;amp; {a_{52}} &amp;amp; {a_{53}} &amp;amp; {a_{54}} &amp;amp; {a_{55}}
\end{array}\right)
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 6.&#48;&#48;&#48;&#48;8em; vertical-align: -2.75&#48;&#48;4em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25&#48;&#48;4em;"><span class="" style="top: -1.&#48;4998em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎝</span></span></span><span class="" style="top: -2.2&#48;499em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎜</span></span></span><span class="" style="top: -2.8&#48;5em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎜</span></span></span><span class="" style="top: -3.4&#48;5&#48;1em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎜</span></span></span><span class="" style="top: -4.&#48;&#48;5&#48;2em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎜</span></span></span><span class="" style="top: -5.25&#48;&#48;4em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎛</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75&#48;&#48;4em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25em;"><span class="" style="top: -5.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.21em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -1.81em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -&#48;.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25em;"><span class="" style="top: -5.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.21em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -1.81em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -&#48;.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25em;"><span class="" style="top: -5.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.21em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -1.81em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -&#48;.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span><span class="mord mtight">3</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25em;"><span class="" style="top: -5.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.21em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -1.81em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -&#48;.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span><span class="mord mtight">4</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="arraycolsep" style="width: &#48;.5em;"></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25em;"><span class="" style="top: -5.41em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -4.21em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">3</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -1.81em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">4</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -&#48;.61em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">5</span><span class="mord mtight">5</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75em;"><span class=""></span></span></span></span></span><span class="arraycolsep" style="width: &#48;.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 3.25&#48;&#48;4em;"><span class="" style="top: -1.&#48;4998em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎠</span></span></span><span class="" style="top: -2.2&#48;499em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎟</span></span></span><span class="" style="top: -2.8&#48;5em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎟</span></span></span><span class="" style="top: -3.4&#48;5&#48;1em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎟</span></span></span><span class="" style="top: -4.&#48;&#48;5&#48;2em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎟</span></span></span><span class="" style="top: -5.25&#48;&#48;4em;"><span class="pstrut" style="height: 3.155em;"></span><span class="delimsizinginner delim-size4"><span class="">⎞</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 2.75&#48;&#48;4em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></p>
<h3 id="计算因子准则权重">2.2. 计算因子/准则权重</h3>
<p>显然判断矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>是<strong>正互反矩阵</strong>,即满足以下条件:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mi mathvariant="normal">i</mi><mo>)</mo><mspace width="1em"></mspace><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>&amp;gt;</mo><mn>&#48;</mn><mo separator="true">,</mo><mspace width="1em"></mspace><mo>(</mo><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">i</mi></mrow><mo>)</mo><mspace width="1em"></mspace><msub><mi>a</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mfrac><mspace width="1em"></mspace><mo>(</mo><mi>i</mi><mo separator="true">,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>⋯</mo>&amp;ThinSpace;<mo separator="true">,</mo><mi>n</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">
(\mathrm{i}) \quad a_{i j}&amp;gt;&#48;, \quad(\mathrm{ii}) \quad a_{j i}=\frac{1}{a_{i j}} \quad(i, j=1,2, \cdots, n)
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.&#48;3611em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathrm">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right: 1em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">&gt;</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.&#48;3611em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord">&#48;</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mspace" style="margin-right: 1em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathrm">i</span><span class="mord mathrm">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right: 1em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.29355em; vertical-align: -&#48;.9721&#48;8em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.32144em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.9721&#48;8em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right: 1em;"></span><span class="mopen">(</span><span class="mord mathit">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit">n</span><span class="mclose">)</span></span></span></span></span></span></p>
<p>进一步,将满足以下条件的正互反矩阵称为<strong>一致性矩阵</strong>:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>a</mi><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>=</mo><msub><mi>a</mi><mrow><mi>i</mi><mi>k</mi></mrow></msub><mo separator="true">,</mo><mspace width="1em"></mspace><mi mathvariant="normal">∀</mi><mi>i</mi><mo separator="true">,</mo><mi>j</mi><mo separator="true">,</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>⋯</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">
a_{i j} a_{j k}=a_{i k}, \quad \forall i, j, k=1,2, \cdots n
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3361&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;3148em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.88888em; vertical-align: -&#48;.19444em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3361&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;3148em;">k</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mspace" style="margin-right: 1em;"></span><span class="mord">∀</span><span class="mord mathit">i</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;3148em;">k</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.83888em; vertical-align: -&#48;.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit">n</span></span></span></span></span></span></p>
<p>直观的理解:如果i对j的重要程度是a,j对k的重要程度是b,那么i对k的重要程度应该a*b,类似于<strong>传递性</strong>。</p>
<p><strong>一致性矩阵具有如下重要性质</strong>:若一致性矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span></span></span></span></span>的最大特征值<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>λ</mi><mi>max</mi><mo>⁡</mo></msub></mrow><annotation encoding="application/x-tex">\lambda_{\max }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.84444em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.15139em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.3&#48;139em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight">max</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>对应的特征向量为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>W</mi><mo>=</mo><msup><mrow><mo fence="true">(</mo><msub><mi>w</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>⋯</mo>&amp;ThinSpace;<mo separator="true">,</mo><msub><mi>w</mi><mi>n</mi></msub><mo fence="true">)</mo></mrow><mi>T</mi></msup></mrow><annotation encoding="application/x-tex">W=\left(w_{1}, \cdots, w_{n}\right)^{T}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.13889em;">W</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.23123em; vertical-align: -&#48;.25em;"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top: &#48;em;">(</span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mclose delimcenter" style="top: &#48;em;">)</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: &#48;.981231em;"><span class="" style="top: -3.2&#48;29em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.13889em;">T</span></span></span></span></span></span></span></span></span></span></span></span></span>,  则<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mfrac><msub><mi>w</mi><mi>i</mi></msub><msub><mi>w</mi><mi>j</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">a_{i j}=\frac{w_{i}}{w_{j}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.25381em; vertical-align: -&#48;.54232em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.711492em;"><span class="" style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.328&#48;86em;"><span class="" style="top: -2.357em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.281886em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.41&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.328&#48;86em;"><span class="" style="top: -2.357em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.54232em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>。</p>
<p>结合判断矩阵的构建可知**<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding="application/x-tex">a_{ij}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>表示因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.65952em; vertical-align: &#48;em;"></span><span class="mord mathit">i</span></span></span></span></span>相对于因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.85396em; vertical-align: -&#48;.19444em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span>的重要性,而<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>a</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mfrac><msub><mi>w</mi><mi>i</mi></msub><msub><mi>w</mi><mi>j</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">a_{i j}=\frac{w_{i}}{w_{j}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.25381em; vertical-align: -&#48;.54232em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.711492em;"><span class="" style="top: -2.655em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.328&#48;86em;"><span class="" style="top: -2.357em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.281886em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.41&#48;1em;"><span class="pstrut" style="height: 3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.328&#48;86em;"><span class="" style="top: -2.357em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.54232em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span>,因此可以将<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>w</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">w_{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.58&#48;56em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>与<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>w</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">w_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.716668em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;2691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;2691em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>分别作为因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.65952em; vertical-align: &#48;em;"></span><span class="mord mathit">i</span></span></span></span></span>与因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.85396em; vertical-align: -&#48;.19444em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span>的绝对重要性,也即因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.65952em; vertical-align: &#48;em;"></span><span class="mord mathit">i</span></span></span></span></span>与因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.85396em; vertical-align: -&#48;.19444em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span>的权重,从而<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.13889em;">W</span></span></span></span></span>即为各因素的权重向量**。还须对向量<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.13889em;">W</span></span></span></span></span>进行归一化处理:每个权重除以权重和作为自己的值,最终总和为1。</p>
<p>然而<strong>判断矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>一般不满足一致性</strong>,但是仍将其当做一致矩阵来处理,从而获得一组权重,但是这组权重能不能被接受,<strong>需要进行一致性检验</strong>。</p>
<h3 id="一致性检验">2.3. 一致性检验</h3>
<p>一致性检验是指对判断矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>确定不一致的允许范围。<strong><span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>阶一致阵的唯一非零特征根为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>阶正互反阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>的最大特征根 <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>λ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>≥</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">\lambda_{max} \geq n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.84444em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>时,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>为非一致矩阵,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>λ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\lambda_{max}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.84444em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>比<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span> 大的越多,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>的不一致性越严重</strong>; 当且仅当 <span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>λ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">\lambda_{max} = n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.84444em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>时,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>为一致矩阵。因此可由<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>λ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow><annotation encoding="application/x-tex">λ_{max}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.84444em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight">x</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span> 是否等于 n 来检验判断矩阵<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.1&#48;9&#48;3em;">M</span></span></span></span></span>是否为一致矩阵。</p>
<p>具体的一致性指标用<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">CI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>计算,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">CI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>越小,说明一致性越大。<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi><mo>=</mo><mn>&#48;</mn></mrow><annotation encoding="application/x-tex">CI=&#48;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.64444em; vertical-align: &#48;em;"></span><span class="mord">&#48;</span></span></span></span></span>,有完全的一致性;<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">CI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span> 接近于&#48;,有满意的一致性;CI 越大,不一致越严重。<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi><mo>=</mo><mfrac><mrow><msub><mi>λ</mi><mi>max</mi><mo>⁡</mo></msub><mo>−</mo><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow><annotation encoding="application/x-tex">
CI=\frac{\lambda_{\max }-n}{n-1}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.14&#48;77em; vertical-align: -&#48;.76933em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.37144em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mord">1</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.15139em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.3&#48;139em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mop mtight">max</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mord mathit">n</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.76933em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p>
<p>考虑到一致性的偏离可能是由于随机原因造成的,因此引入随机一致性指标<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">RI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>衡量随机因素所造成的一致性偏离的大小:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>I</mi><mo>=</mo><mfrac><mrow><mi>C</mi><msub><mi>I</mi><mn>1</mn></msub><mo>+</mo><mi>C</mi><msub><mi>I</mi><mn>2</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>C</mi><msub><mi>I</mi><mi>n</mi></msub></mrow><mi>n</mi></mfrac></mrow><annotation encoding="application/x-tex">
R I=\frac{C I_{1}+C I_{2}+\cdots+C I_{n}}{n}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.&#48;4633em; vertical-align: -&#48;.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36&#48;33em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;7847em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;7847em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: &#48;.222222em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;7847em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.686em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p>
<p>随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">RI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>指标通过查表获得:</p>

<table>
<thead>
<tr>
<th>矩阵阶数 n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1&#48;</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>&#48;</td>
<td>&#48;</td>
<td>&#48;.58</td>
<td>&#48;.9&#48;</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table><p><img src="https://upload-images.jianshu.io/upload_images/2&#48;447423-2dc93&#48;49b4a51&#48;19.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/124&#48;" alt="image.png"></p>
<p>最终使用的检验统计量为<strong>检验系数CR</strong>,公式如下:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>R</mi><mo>=</mo><mfrac><mrow><mi>C</mi><mi>I</mi></mrow><mrow><mi>R</mi><mi>I</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">
CR=\frac{CI}{RI}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.&#48;4633em; vertical-align: -&#48;.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.36&#48;33em;"><span class="" style="top: -2.314em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.677em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.686em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p>
<p>当<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>R</mi><mo>&amp;lt;</mo><mn>&#48;.1&#48;</mn></mrow><annotation encoding="application/x-tex">CR&amp;lt;&#48;.1&#48;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.72243em; vertical-align: -&#48;.&#48;391em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.64444em; vertical-align: &#48;em;"></span><span class="mord">&#48;</span><span class="mord">.</span><span class="mord">1</span><span class="mord">&#48;</span></span></span></span></span>时,认为判断矩阵的一致性是可以接受的,否则须要对判断矩阵作适当修正。</p>
<hr>
<p><em>以下为AHP单排序的示例代码</em></p>
<pre class=" language-python"><code class="prism  language-python"><span class="token keyword">import</span> numpy <span class="token keyword">as</span> np
<span class="token keyword">class</span> <span class="token class-name">AHP</span><span class="token punctuation">:</span>
    <span class="token comment">#传入的np.ndarray是的判断矩阵</span>
    <span class="token keyword">def</span> <span class="token function">__init__</span><span class="token punctuation">(</span>self<span class="token punctuation">,</span>array<span class="token punctuation">)</span><span class="token punctuation">:</span>
        self<span class="token punctuation">.</span>array <span class="token operator">=</span> array
        <span class="token comment"># 记录矩阵大小</span>
        self<span class="token punctuation">.</span>n <span class="token operator">=</span> array<span class="token punctuation">.</span>shape<span class="token punctuation">[</span><span class="token number">&#48;</span><span class="token punctuation">]</span>
        <span class="token comment"># 初始化RI值,用于一致性检验 </span>
        RI_list <span class="token operator">=</span> <span class="token punctuation">[</span><span class="token number">&#48;</span><span class="token punctuation">,</span><span class="token number">&#48;</span><span class="token punctuation">,</span><span class="token number">&#48;.58</span><span class="token punctuation">,</span><span class="token number">&#48;.9&#48;</span><span class="token punctuation">,</span><span class="token number">1.12</span><span class="token punctuation">,</span><span class="token number">1.24</span><span class="token punctuation">,</span><span class="token number">1.32</span><span class="token punctuation">,</span><span class="token number">1.41</span><span class="token punctuation">,</span><span class="token number">1.45</span><span class="token punctuation">]</span>
        self<span class="token punctuation">.</span>RI <span class="token operator">=</span> RI_list<span class="token punctuation">[</span>self<span class="token punctuation">.</span>n<span class="token number">-1</span><span class="token punctuation">]</span>
        
        <span class="token comment">#获取最大特征值和对应的特征向量</span>
    <span class="token keyword">def</span> <span class="token function">get_eig</span><span class="token punctuation">(</span>self<span class="token punctuation">)</span><span class="token punctuation">:</span>
        <span class="token comment">#numpy.linalg.eig() 计算矩阵特征值与特征向量</span>
        eig_val <span class="token punctuation">,</span>eig_vector <span class="token operator">=</span> np<span class="token punctuation">.</span>linalg<span class="token punctuation">.</span>eig<span class="token punctuation">(</span>self<span class="token punctuation">.</span>array<span class="token punctuation">)</span>
        <span class="token comment">#获取最大特征值</span>
        max_val <span class="token operator">=</span> np<span class="token punctuation">.</span><span class="token builtin">max</span><span class="token punctuation">(</span>eig_val<span class="token punctuation">)</span>
        max_val <span class="token operator">=</span> <span class="token builtin">round</span><span class="token punctuation">(</span>max_val<span class="token punctuation">.</span>real<span class="token punctuation">,</span> <span class="token number">4</span><span class="token punctuation">)</span>
        <span class="token comment">#通过位置来确定最大特征值对应的特征向量</span>
        index <span class="token operator">=</span> np<span class="token punctuation">.</span>argmax<span class="token punctuation">(</span>eig_val<span class="token punctuation">)</span>
        max_vector <span class="token operator">=</span> eig_vector<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token punctuation">,</span>index<span class="token punctuation">]</span>
        max_vector <span class="token operator">=</span> max_vector<span class="token punctuation">.</span>real<span class="token punctuation">.</span><span class="token builtin">round</span><span class="token punctuation">(</span><span class="token number">4</span><span class="token punctuation">)</span>
        <span class="token comment">#添加最大特征值属性</span>
        self<span class="token punctuation">.</span>max_val <span class="token operator">=</span> max_val
        <span class="token comment">#计算权重向量W</span>
        weight_vector <span class="token operator">=</span> max_vector<span class="token operator">/</span><span class="token builtin">sum</span><span class="token punctuation">(</span>max_vector<span class="token punctuation">)</span>
        weight_vector <span class="token operator">=</span> weight_vector<span class="token punctuation">.</span><span class="token builtin">round</span><span class="token punctuation">(</span><span class="token number">4</span><span class="token punctuation">)</span>
        <span class="token comment">#打印结果</span>
        <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"最大的特征值: "</span><span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>max_val<span class="token punctuation">)</span><span class="token punctuation">)</span>
        <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"对应的特征向量为: "</span><span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>max_vector<span class="token punctuation">)</span><span class="token punctuation">)</span>
        <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"归一化后得到权重向量: "</span><span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>weight_vector<span class="token punctuation">)</span><span class="token punctuation">)</span>
        <span class="token keyword">return</span> weight_vector
   
    <span class="token comment">#测试一致性</span>
    <span class="token keyword">def</span> <span class="token function">test_consitst</span><span class="token punctuation">(</span>self<span class="token punctuation">)</span><span class="token punctuation">:</span>
        <span class="token comment">#计算CI值</span>
        CI <span class="token operator">=</span> <span class="token punctuation">(</span>self<span class="token punctuation">.</span>max_val<span class="token operator">-</span>self<span class="token punctuation">.</span>n<span class="token punctuation">)</span><span class="token operator">/</span><span class="token punctuation">(</span>self<span class="token punctuation">.</span>n<span class="token number">-1</span><span class="token punctuation">)</span>
        CI <span class="token operator">=</span> <span class="token builtin">round</span><span class="token punctuation">(</span>CI<span class="token punctuation">,</span><span class="token number">4</span><span class="token punctuation">)</span>
        <span class="token comment">#打印结果</span>
        <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"判断矩阵的CI值为"</span> <span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>CI<span class="token punctuation">)</span><span class="token punctuation">)</span>
        <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"判断矩阵的RI值为"</span> <span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>self<span class="token punctuation">.</span>RI<span class="token punctuation">)</span><span class="token punctuation">)</span>
        <span class="token comment">#分类讨论</span>
        <span class="token keyword">if</span> self<span class="token punctuation">.</span>n <span class="token operator">==</span> <span class="token number">2</span><span class="token punctuation">:</span>
            <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"仅包含两个子因素,不存在一致性问题"</span><span class="token punctuation">)</span>
        <span class="token keyword">else</span><span class="token punctuation">:</span>
            <span class="token comment">#计算CR值</span>
            CR <span class="token operator">=</span> CI<span class="token operator">/</span>self<span class="token punctuation">.</span>RI
            CR <span class="token operator">=</span> <span class="token builtin">round</span><span class="token punctuation">(</span>CR<span class="token punctuation">,</span><span class="token number">4</span><span class="token punctuation">)</span>
            <span class="token comment">#CR &lt; &#48;.1&#48;才能通过检验</span>
            <span class="token keyword">if</span>  CR <span class="token operator">&lt;</span> <span class="token number">&#48;.1&#48;</span> <span class="token punctuation">:</span>
                <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"判断矩阵的CR值为"</span> <span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>CR<span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token string">",通过一致性检验"</span><span class="token punctuation">)</span>
                <span class="token keyword">return</span> <span class="token boolean">True</span>
            <span class="token keyword">else</span><span class="token punctuation">:</span>
                <span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">"判断矩阵的CR值为"</span> <span class="token operator">+</span><span class="token builtin">str</span><span class="token punctuation">(</span>CR<span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token string">",未通过一致性检验"</span><span class="token punctuation">)</span>
                <span class="token keyword">return</span> <span class="token boolean">False</span>  
</code></pre>
<h2 id="ahp总排序">3. AHP总排序</h2>
<p><strong>总排序本质上是对最底层重复AHP单排序过程</strong>,此处不再赘述,仅给出子因素总权重计算公式以及一致性检验统计量公式。</p>
<p>若中间层<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit">A</span></span></span></span></span>包含<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">m</span></span></span></span></span>个因素主因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>{</mo><msub><mi>A</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>A</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>A</mi><mi>m</mi></msub><mo>}</mo></mrow><annotation encoding="application/x-tex">\{A_1, A_2, ..., A_m\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mclose">}</span></span></span></span></span>,其层次总排序权值分别为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">(a_1, a_2, ..., a_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>,最底层<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span></span></span></span></span>包含<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.43&#48;56em; vertical-align: &#48;em;"></span><span class="mord mathit">n</span></span></span></span></span>个子因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>{</mo><msub><mi>B</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>B</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>B</mi><mi>m</mi></msub><mo>}</mo></mrow><annotation encoding="application/x-tex">\{B_1, B_2, ..., B_m\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;5&#48;17em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3&#48;11&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;5&#48;17em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.151392em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;5&#48;17em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">m</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mclose">}</span></span></span></span></span>,它们对于因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>A</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">A_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.969438em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>的层次单排序权值分别为<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><msub><mi>b</mi><mrow><mn>1</mn><mi>j</mi></mrow></msub><mo separator="true">,</mo><msub><mi>b</mi><mrow><mn>2</mn><mi>j</mi></mrow></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>b</mi><mrow><mi>m</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">(b_{1j}, b_{2j}, ..., b_{mj})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1.&#48;3611em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>。当<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>B</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">B_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.83333em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;5&#48;17em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>与<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>A</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">A_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.969438em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>无联系时,<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>&#48;</mn></mrow><annotation encoding="application/x-tex">b_{ij}=&#48;</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.98&#48;548em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: &#48;.64444em; vertical-align: &#48;em;"></span><span class="mord">&#48;</span></span></span></span></span>。则最底层的子因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>B</mi><mi>i</mi></mrow><annotation encoding="application/x-tex">Bi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="mord mathit">i</span></span></span></span></span>总权重公式为<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>W</mi><mrow><mi>b</mi><mi>i</mi></mrow></msub><mo>=</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>a</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">
W_{bi} = \sum_{j=1}^{m} \sum_{i=1}^{n}b_{i j} a_{j}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.83333em; vertical-align: -&#48;.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.13889em;">W</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.3361&#48;8em;"><span class="" style="top: -2.55em; margin-left: -&#48;.13889em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">b</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 3.&#48;6517em; vertical-align: -1.41378em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.87233em; margin-left: &#48;em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.&#48;5&#48;&#48;1em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3&#48;&#48;&#48;1em; margin-left: &#48;em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.41378em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.6514em;"><span class="" style="top: -1.87233em; margin-left: &#48;em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.&#48;5&#48;&#48;1em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class=""><span class="mop op-symbol large-op">∑</span></span></span><span class="" style="top: -4.3&#48;&#48;&#48;1em; margin-left: &#48;em;"><span class="pstrut" style="height: 3.&#48;5em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.27767em;"><span class=""></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord"><span class="mord mathit">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></p>
<p>用<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi><mo>(</mo><mi>j</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">CI(j)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mclose">)</span></span></span></span></span>与<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>I</mi><mo>(</mo><mi>j</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">RI(j)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: 1em; vertical-align: -&#48;.25em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mclose">)</span></span></span></span></span>分别表示对主因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>A</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">A_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.969438em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>对应的子因素<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>B</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding="application/x-tex">B_{ij}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.969438em; vertical-align: -&#48;.2861&#48;8em;"></span><span class="mord"><span class="mord mathit" style="margin-right: &#48;.&#48;5&#48;17em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: -&#48;.&#48;5&#48;17em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span></span>进行单排序所计算的<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">CI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>与<span class="katex--inline"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">RI</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span></span></span></span></span>值,则一致性检验公式为:<br>
<span class="katex--display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>R</mi><mo>=</mo><mfrac><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mi>C</mi><mi>I</mi><mo>(</mo><mi>j</mi><mo>)</mo><msub><mi>a</mi><mi>j</mi></msub></mrow><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><mi>R</mi><mi>I</mi><mo>(</mo><mi>j</mi><mo>)</mo><msub><mi>a</mi><mi>j</mi></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">
C R=\frac{\sum_{j=1}^{m} C I(j) a_{j}}{\sum_{j=1}^{m} R I(j) a_{j}}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height: &#48;.68333em; vertical-align: &#48;em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mspace" style="margin-right: &#48;.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: &#48;.277778em;"></span></span><span class="base"><span class="strut" style="height: 2.76&#48;22em; vertical-align: -1.13&#48;11em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 1.63&#48;11em;"><span class="" style="top: -2.3&#48;571em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -5e-&#48;6em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.8&#48;4292em;"><span class="" style="top: -2.4&#48;&#48;29em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.2&#48;29em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.435818em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;&#48;773em;">R</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mclose">)</span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span><span class="" style="top: -3.23em;"><span class="pstrut" style="height: 3em;"></span><span class="frac-line" style="border-bottom-width: &#48;.&#48;4em;"></span></span><span class="" style="top: -3.82582em;"><span class="pstrut" style="height: 3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position: relative; top: -5e-&#48;6em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.8&#48;4292em;"><span class="" style="top: -2.4&#48;&#48;29em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span class="" style="top: -3.2&#48;29em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">m</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.435818em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: &#48;.166667em;"></span><span class="mord mathit" style="margin-right: &#48;.&#48;7153em;">C</span><span class="mord mathit" style="margin-right: &#48;.&#48;7847em;">I</span><span class="mopen">(</span><span class="mord mathit" style="margin-right: &#48;.&#48;5724em;">j</span><span class="mclose">)</span><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: &#48;.311664em;"><span class="" style="top: -2.55em; margin-left: &#48;em; margin-right: &#48;.&#48;5em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right: &#48;.&#48;5724em;">j</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: &#48;.2861&#48;8em;"><span class=""></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 1.13&#48;11em;"><span class=""></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></p>
<h2 id="参考文献">参考文献</h2>
<p>[1] 百度百科. 层次分析法[EB/OL].  <a href="https://baike.baidu.com/item/%E5%B1%82%E6%AC%A1%E5%88%86%E6%9E%9&#48;%E6%B3%95/1672?fr=aladdin">https://baike.baidu.com/item/层次分析法/1672?fr=aladdin</a>.</p>
<p>[2] 吃机智豆长大的少女乙. 数学建模之层次分析法(AHP)[EB/OL]. <a href="https://blog.csdn.net/weixin_418&#48;6692/article/details/82415621">https://blog.csdn.net/weixin_418&#48;6692/article/details/82415621</a>, 2&#48;18-&#48;9-&#48;5.</p>
<p>[3] 杜世平, 汪建, 马文彬. 层次模糊综合评价法在校园环境质量评价中的应用[J]. 安徽农业科学, 2&#48;&#48;8, 36(1&#48;).</p>
<p>[4] Blue Mountain. 建模算法(十一)——层次分析法[EB/OL]. <a href="https://www.cnblogs.com/BlueMountain-HaggenDazs/p/4278&#48;49.htmlxu">https://www.cnblogs.com/BlueMountain-HaggenDazs/p/4278&#48;49.htmlxu</a>, 2&#48;15-&#48;2-&#48;6.</p>
<p>[5] pwtd_huran. Python实现AHP(层次分析法)[EB/OL].  <a href="https://blog.csdn.net/pwtd_huran/article/details/8&#48;4&#48;58&#48;7">https://blog.csdn.net/pwtd_huran/article/details/8&#48;4&#48;58&#48;7</a>, 2&#48;18-&#48;5-22.</p>
<p>[6] SPSSAU. 模糊综合评价法如何在软件中操作?[EB/OL]. <a href="https://www.zhihu.com/question/29715379/answer/654379638">https://www.zhihu.com/question/29715379/answer/654379638</a>, 2&#48;19-&#48;4-17.</p>
</div>
</div>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


早起学习强国
沙发
WHAND 学生认证  发表于 2020-2-25 13:27:33 |只看作者 |坛友微信交流群
不知道为什么markdown格式完全乱码,贴一下我在知乎上写的专栏文章地址吧:https://zhuanlan.zhihu.com/p/108958590
已有 1 人评分经验 收起 理由
np84 + 100 精彩帖子

总评分: 经验 + 100   查看全部评分

使用道具

藤椅
lzh1244278451 发表于 2020-3-8 14:38:28 来自手机 |只看作者 |坛友微信交流群
WHAND 发表于 2020-2-25 13:21
不知道为什么markdown格式完全乱码,贴一下我在知乎上写的专栏文章地址吧:https://zhuanlan.zhihu.com/p/ ...
你好,问你一个问题哈。AHP里构造矩阵那里,两两比较是相除还是相减呢,我是设置的1-9重要程度打分,如果a1重要程度是2,a6重要程度是5,那这两个比较得到的数字是相除还是相减呀~

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 14:57