Multicollinearity in Structural Equation Models (SEM)
- Standardized regression weights: Since all the latent variables in a SEM model have been assigned a metric of 1, all the standardized regression weights should be within the range of plus or minus 1. When there is a multicollinearity problem, a weight close to 1 indicates the two variables are close to being identical. When these two nearly identical latent variables are then used as causes of a third latent variable, the SEM method will have difficulty computing separate regression weights for the two paths from the nearly-equal variables and the third variable. As a result it may well come up with one standardized regression weight greater than +1 and one weight less than -1 for these two paths.
- Standard errors of the unstandardized regression weights: Likewise, when there are two nearly identical latent variables, and these two are used as causes of a third latent variable, the difficulty in computing separate regression weights may well be reflected in much larger standard errors for these paths than for other paths in the model, reflecting high multicollinearity of the two nearly identical variables.
- Covariances of the parameter estimates: Likewise, the same difficulty in computing separate regression weights may well be reflected in high covariances of the parameter estimates for these paths - estimates much higher than the covariances of parameter estimates for other paths in the model.
- Variance estimates: Another effect of the same multicollinearity syndrome may be negative variance estimates. In the example above of two nearly-identical latent variables causing a third latent variable, the variance estimate of this third variable may be negative.
[此贴子已经被作者于2006-5-18 1:03:39编辑过]