IV Semiparametric Approaches 215
12 Semiparametric Generalized Linear Models: Bayesian Approaehes217
B. K. Mallick, D. G. T. Denison & A.F. M. Smith
1. Introduction 217
2. Modeling the Link Function g ...................... 218
2.1 Binary Response Regression 218
2.2 General Regression 219
3. Modeling the Systematic Part r) . . . 219
3.1 Model with Random Effects 220
3.2 Model with Deterministic Error ................. 220
4. Models Using Curves and Surfaces . 220
5. GLMs using Bayesian MARS ...................... 221
5.1 Classical MARS 221
5.2 Bayesian MARS 222
5.3 Bayesian MARS for GLMs 224
6. Examples of Bayesian MARS for GLMs 224
6.1 Motivating Example ....................... 224
6.2 Pima Indian Example 225
13 Binary Response Regression with Normal Scale Mixture Links 231
S. Basu & S. Mukhopadhyay
1. Introduction 231
2. The Finite Mixture Model 233
3. General Mixtures and a Dirichlet Process Prior 234
4. Model Diagnostic 236
4.1 Basic Goal 236
4.2 Diagnostic Tools 237
4.3 Computational Methods 237
5. Application: Student Retention at the University of Arkansas .... 237
6. Discussion . 239
14 Binary Regression Using Data Adaptive Robust Link Functions 243
R. Haro-Lopez, B. K, Mallick & A. F. M, Smiih
1. Introduction 243
2. The Binary Regression Model 244
3. Detection of Outliers and Model Comparison 248
4. Numerical Illustration . 248
5. Discussion 250
15 A Mixture-Model Approach to the Analysis of Survival Data 255
L. Kuo & F. Peng
1. Introduction 255
2. Likelihood 257
3. EM and Monte Carlo EM 257
4. Gibbs Sampler 259
5. Model Selection . 260
6. Example 261
6.1 EM Algorithm for the Specific Example 262
6.2 Gibbs Samplers for the Specific Example 264
6.3 Numerical Results . 265
V Model Diagnostics and Variable Selection in GLMs 271
16 Bayesian Variable Selection Using the Gibbs Sampler 273
P. Dellaportas, J. J. Forster & I. Ntzoufras
1. Introduction 273
2. Gibbs Sampler Based Variable Selection Strategies . 274
2.1 Carlin and Chib's Method 275
2.2 Stochastic Search Variable Selection 276
2.3 Unconditional Priors for Variable Selection 277
2.4 Gibbs Variable Selection 277
2.5 Summary of Variable Selection Strategies 278
3. Illustrative Example: 2x2x2 Contingency Table 278
3.1 Log-Linear models 280
3.2 Logistic Regression Models 280
4. Discussion 281
5. Appendix: BUGS CODES 282
5.1 Code for Log-linear Models for 23 Contingency Table 282
5.2 Code for Logistic Models with 2 Binary Explanatory Factors 283
17 Bayesian Methods for Variable Selection in the Cox Model 287
J. Ibrahim & M. H. Chen
1. Introduction 287
2. The Method 289
2.1 Model and Notation 289
2.2 Prior Distribution for hb(-) 289
2.3 The Likelihood Function .292
2.4 Prior Distribution for the Regression Coefficients ....... 293
2.5 Prior Distribution on the Model Space 297
3. Computational Implementation 299
3.1 Computing the Marginal Distribution of the Data 299
3.2 Sampling from the Posterior Distribution of (/3^, A) .... 302
4. Example: Simulation Study 305
5. Discussion 309
18 Bayesian Model Diagnostics for Correlated Binary Data 313
D. K. Dey & M. H. Chen
1. Introduction . 313
2. The Models 314
2.1 Stratified and Mixture Models 314
2.2 Conditional Models 314
2.3 Multivariate Probit Models ................... 315
2.4 Multivariate t-Link Models 315
3. The Prior Distributions and Posterior Computations 316
3.1 Prior Distributions 316
3.2 Posterior Computations 317
4. Model Adequacy for Correlated Binary Data 320
5. Voter Behavior Data example 324
6. Concluding Remarks 325
|