你好,欢迎来到经管之家 [登录] [注册]

设为首页 | 经管之家首页 | 收藏本站

暴雨资料的选样与统计方法(1)_工程力学专业毕业论文范文

发布时间:2014-12-28 来源:人大经济论坛
暴雨资料的选样与统计方法(1)_工程力学专业毕业论文范文 摘要:暴雨资料的选样有年最大值法和非年最大值法。在理论上,非年最大值法更适合城市排水。但目前所用的年多个样法需要很多资料,统计也很麻烦,以改用年超大值法为宜。年最大值法也可在城市排水中应用,但必须作重现期转换。提出了一种修正的年最大值法,在统计中先转换经验重现期,再推求暴雨公式。这样获得的暴雨公式与现行方法的结果基本一致,统计中频率分布也无需更改。 关键词:暴雨选样 年最大值法 年超大值法 年多个样法 频率分布 城市暴雨资料的选样与统计方法,对暴雨公式的精度有相当大的影响。根据《室外排水设计规范》(gbj14-87)的规定,我国采用年多个样法选样,每年各历时选择6~8个最大值,然后统一排序,取资料年数3~4倍的最大值作为统计的基础。这种方法需要很多资料,收集困难,统计也比较麻烦。文献[1]提出用年最大值法选样。年最大值法选样简单,资料易得,但会遗漏一些数值较大的暴雨,造成小重现期部分明显偏小。使用时需通过修正才能与目前所用的方法接近,同时频率分布模型也要作相应改变[1],这样就带来许多新的问题。本文通过分析,提出用年超大值法或修正的年最大值法选样,可简化选样和统计,且结果与目前所用的方法接近甚至精度更高。 1 年超大值法选样 暴雨资料选样有年最大值法、年超大值法、超定量法和年多个样法等。年最大值法每年选一个最大值,选样简单,独立性强。在水文统计中应用最广。但该法会遗漏一些数值较大,但在年内排位第二或第三的暴雨,使小重现期部分(重现期1~5年)的暴雨强度明显偏小,但在大重现期部分(10年以上)雨强差异不大。在水利工程中,所用重现期较大,一般在几十年以上,重要水库甚至达几千年。因此用年最大值法不会引起误差。由于它选样简单、独立性强,在水文统计中一般用该法。但在城市排水中采用的重现期很小,一般为1~5年,个别还不到1年。因此用年最大值法会出现明显偏差。年超大值法、超定量法、年多个样法可统称为非年最大值法,特点是不会遗漏较大暴雨。在小重现期部分比较真实地反映了暴雨的统计规律,且可获得重现期小于1年的暴雨。因此在理论上非年最大值法更适合排水工程,这是首先应肯定的。 在非年最大值法中,超定量法和年多个样法选样麻烦,所需资料多;而年超大值法选样较简单,所需资料少。在国外的城市排水中常用年超大值法选样[2,3]。这种方法是否适合我国的城市排水呢?笔者认为是完全可以的,理由如下: (1)城市排水设计重现期已经提高。在六七十年代,我国城市排水设计重现期较低,最低为0.25~0.33年,暴雨资料也较少。因此用年多个样法,每年平均选择3~4个资料作为统计的基础是合理的。但目前城市排水设计重现期也有较大提高,规范中规定一般地区为0.5~3年,实际采用值一般不小于1年。而且随着经济的发展,设计重现期还会逐步提高,因此没有必要再去统计小重现期的暴雨强度。如统计的最小重现期为1年,则平均每年选样的数量可减少至1个,即成为年超大值法。此外,目前各地暴雨资料已积累较多,也为年超大值法的应用创造了条件。 (2)年超大值法与年多个样法结果相近。年超大值法和年多个样法都是在n年暴雨资料统一排序后,取其中前面部分数据。其中年超大值法平均每年选1个,年多个样法平均每年选3~4个。因此年超大值法的数据与年多个样法的前n个数据完全相同,如图1所示。只是年多个样法的尾部长一些。因此两者在重现期大于1年的部分适线结果不会相差很大。相反,去掉尾部点据后,适线时可更好地照顾上部点据,使常用重现期范围内的适线精度有所提高。 图1 年超大值法与年多个样法比较(温州市10min雨强) 如果排水设计的最小重现期为0.5年,是否可用年超大值法选样呢?在图1中可以看到,重现期大于1年和小于1年的点据,在单对数纸上并没有出现明显的转折。因此用年超大值法选样时,可根据重现期大于1年的上部点据适线,然后向下外延至0.5年。由于外延不多,不会明显降低精度。 现以温州市气象局提供的1953~1984年32年自记雨量资料为例,说明年超大值法的精度。先按规范要求用年多个样法选样,每年各历时选8个最大值,统一排序,取资料年数4倍的最大值统计。按下式计算经验重现期: (1) 式中t——重现期,a; n——资料年数; m——从大到小的排列序号。 然后按指数分布曲线适线。适线时用最小二乘法,得到9个历时重现期0.25~10年的i~t~t关系(见表1)。根据表1,可确定暴雨公式的参数。暴雨公式的形式为: (2) 表1 温州市暴雨i~t~t关系 本文采用0.618法优选参数b,用最小二乘法确定参数n及a1、c。结果见表2。 表2 各种选样方法所得的暴雨公式的参数 现用年超大值法选样,在大雨较多年份,每年各历时可选出2~3个最大值,大雨较少年份每年可选1个最大值,然后统一排序,取排位在前的n个数值进行统计,这样,所需资料明显减少。然后也按指数曲线适线,向下外延至重现期0.5年,求出重现期0.5~10年的i~t~t关系,并求暴雨公式参数,结果亦见表2。 为了比较公式的精度,可计算各公式的标准差。标准差计算公式为: (3) 式中ig——i~t~t关系表中的雨强; ij——公式计算的雨强; m1——历时数。 不同选样方法获得的i~t~t关系值是不同的。现以年多个样法得到的i~t~t关系表(表1)为准计算各公式的标准差。平均标准差σ也见表2。计算时年多个样法按规范取0.25~10年共8个重现期,而年超大值法取0.5~10年共6个重现期。 从上例可以看出,采用年超大值法后,平均标准差不但没有增大,反而有所减小。精度提高的原因是确定暴雨公式参数时,年超大值法没有考虑重现期小于0.5年的数据,可以更好地照顾其它重现期的点据。因此公式在常用重现期范围内精度更高。
经管之家“学道会”小程序
  • 扫码加入“考研学习笔记群”
推荐阅读
经济学相关文章
标签云
经管之家精彩文章推荐