| 所在主题: | |
| 文件名: Continuous Univariate Distributions, Vol. 1.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1504155.html | |
| 附件大小: | |
|
论坛好像没有这篇文章。虽然是转发过来的,但超链接等经过了我精心的编辑。求评分!加精就更好了。英语阅读稍有困难的,推荐“灵格斯”划词翻译。
Diagram of distribution relationships Probability distributions have a surprising number inter-connections. A dashed line in the chart below indicates an approximate (limit) relationship between two distribution families. A solid line indicates an exact relationship: special case, sum, or transformation. Click on a distribution for the parameterization of that distribution. Click on an arrow for details on the relationship represented by the arrow. Other diagrams on this site:
The chart above is adapted from the chart originally published by Lawrence Leemis in 1986 (Relationships Among Common Univariate Distributions, American Statistician 40:143-146.) Leemis published a larger chart in 2008 which is available online. ParameterizationsThe precise relationships between distributions depend on parameterization. The relationships detailed below depend on the following parameterizations for the PDFs. Let C(n, k) denote the binomial coefficient(n, k) and B(a, b) = Γ(a) Γ(b) / Γ(a + b). Geometric: f(x) = p (1-p)x for non-negative integers x. Discrete uniform: f(x) = 1/n for x = 1, 2, ..., n. Negative binomial: f(x) = C(r + x - 1, x) pr(1-p)x for non-negative integers x. See notes on the negative binomial distribution. Beta binomial: f(x) = C(n, x) B(α + x, n + β - x) / B(α, β) for x = 0, 1, ..., n. Hypergeometric: f(x) = C(M, x) C(N-M, K - x) / C(N, K) for x = 0, 1, ..., N. Poisson: f(x) = exp(-λ) λx/ x! for non-negative integers x. The parameter λ is both the mean and the variance. Binomial: f(x) = C(n, x) px(1 - p)n-x for x = 0, 1, ..., n. Bernoulli: f(x) = px(1 - p)1-x where x = 0 or 1. Lognormal: f(x) = (2πσ2)-1/2 exp( -(log(x) - μ)2/ 2σ2) / x for positive x. Note that μ and σ2are not the mean and variance of the distribution. Normal : f(x) = (2π σ2)-1/2 exp( - ½((x - μ)/σ)2 ) for all x. Beta: f(x) = Γ(α + β) xα-1(1 - x)β-1 / (Γ(α) Γ(β)) for 0 ≤ x ≤ 1. Standard normal: f(x) = (2π)-1/2 exp( -x2/2) for all x. Chi-squared: f(x) = x-ν/2-1 exp(-x/2) / Γ(ν/2) 2ν/2 for positive x. The parameter ν is called the degrees of freedom. Gamma: f(x) = β-α xα-1 exp(-x/β) / Γ(α) for positive x. The parameter α is called the shape and β is the scale. Uniform: f(x) = 1 for 0 ≤ x ≤ 1. Cauchy: f(x) = σ/(π( (x - μ)2 + σ2) ) for all x. Note that μ and σ are location and scale parameters. The Cauchy distribution has no mean or variance. Snedecor F: f(x) is proportional to x(ν1 - 2)/2 / (1 + (ν1/ν2) x)(ν1 + ν2)/2 for positive x. Exponential: f(x) = exp(-x/μ)/μ for positive x. The parameter μ is the mean. Student t: f(x) is proportional to (1 + (x2/ν))-(ν + 1)/2 for positive x. The parameter ν is called the degrees of freedom. Weibull: f(x) = (γ/β) xγ-1 exp(- xγ/β) for positive x. The parameter γ is the shape and β is the scale. Double exponential : f(x) = exp(-|x-μ|/σ) / 2σ for all x. The parameter μ is the location and mean; σ is the scale. For comparison, see distribution parameterizations in R/S-PLUS and Mathematica. |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明