| 所在主题: | |
| 文件名: Rational Chebyshev approximations for the inverse of the error function.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1626423.html | |
| 附件大小: | |
|
In mathematics, the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape that occurs in probability, statistics, and partial differential equations describing diffusion. It is defined as:
The complementary error function, denoted erfc, is defined as
Which also defines erfcx, the scaled complementary error function(which can be used instead of erfc to avoid arithmetic underflow). The imaginary error function, denoted erfi, is defined as
Where D(x) is the Dawson function (which can be used instead of erfi to avoid arithmetic overflow).When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:
2篇关于误差函数的文献 [hide] [/hide]
由于MATLAB的所有版本已经拥有erf、erfc及其逆函数的代码,但是只有R2014a才有erfi函数的代码,下面将给出erfi函数的MATLAB(R2014a)代码。 [hide]function ans=erfi(x) % %erfi(x). The Imaginary error function, as it is defined in Mathematica % %erfi(z)==erf(iz)/i (z could be complex) using % %the incomplete gamma function in matlab: gammainc % %Using "@": erfi = @(x) real(-sqrt(-1).*sign(x).*gammainc(-x.^2,1/2)) % %Note: limit(x->0) erfi(x)/x -> 2/sqrt(pi) % % %Example 1: % x=linspace(0.001,6,100); % y=exp(-x.^2).*erfi(x)./2./x; % figure(1), clf;plot(x,y*sqrt(pi)) % % %Example 2: % [x,y]=meshgrid(linspace(-3,3,180),linspace(-3,3,180)); % z=x+i*y; % figure(1), clf;contourf(x,y,log(erfi(z))) % axis equal;axis off xc=5.7;%cut for asymptotic approximation (when x is real) ans=~isreal(x).*(-(sqrt(-x.^2)./(x+isreal(x))).*gammainc(-x.^2,1/2))+... isreal(x).*real(-sqrt(-1).*sign(x).*((x<xc).*gammainc(-x.^2,1/2))+... (x>=xc).*exp(x.^2)./x/sqrt(pi)); 其数值形式的MATLAB Code为 function f=erfi1(y) fun=inline('exp(x.^2)*2/sqrt(pi)','x'); f=quadl(fun,0,y); [/hide] |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明