| 所在主题: | |
| 文件名: 166565.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-166565.html | |
本附件包括:
|
|
| 附件大小: | |
|
<p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">看了论坛对<span lang="EN-US">SPSS</span>的讨论很受益,但对于主成分分析和因子分析的异同(参考文献1),还有以下疑惑之处:<span lang="EN-US">
<p></p></span></span></p><p></p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">变量A已分为四种类型,每种类型下设有5道题,希望从调查问卷<span lang="EN-US">(likert 5</span>级量表<span lang="EN-US">)</span>的分析中能够检验此四种类型分类的合理性。那么,</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;"><span lang="EN-US"><p></p></span></span></p><p></p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span lang="EN-US" style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">(1)</span><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">虽然两者都是对协差阵的逼近来达到数据变量的精简的<span lang="EN-US">(</span>最后都能得到<span lang="EN-US">4</span>种因子<span lang="EN-US">)</span>,但究竟用哪种方法更可取?</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;"><span lang="EN-US"><p></p></span></span></p><p></p><p></p><p class="MsoNormal" align="left" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: left; mso-layout-grid-align: none;"><span lang="EN-US" style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">(2)</span><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">大多数教材上都是如此说,“单击<span lang="EN-US">Analyze-Data Reduction-Factor</span>命令,设置因素分析主对话框,单击<span lang="EN-US">Extraction</span>按钮,按照系统默认值抽取特征值</span><span lang="EN-US" style="COLOR: black; mso-bidi-font-size: 10.5pt; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt; mso-ascii-font-family: 宋体;"><font face="Times New Roman">≥</font></span><span lang="EN-US" style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">1</span><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">的因素”;但在参考文献2,通过对标准化后的变量进行抽取特征值</span><span lang="EN-US" style="COLOR: black; mso-bidi-font-size: 10.5pt; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt; mso-ascii-font-family: 宋体;"><font face="Times New Roman">≥</font></span><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">0的因素。用这两种方法分别抽取变量标准化前及后的数据,得出来的结果完全不同,是怎么回事?后种方法甚至出现了错误?</span></p><p class="MsoNormal" align="left" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: left; mso-layout-grid-align: none;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;"><span lang="EN-US"><p></p></span></span></p><p></p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span lang="EN-US" style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">(3)KMO</span><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">值越大时,表示变量间的共同因素越多,越适合进行因素分析。它与哪些值有关?与<span lang="EN-US">Correlation Matrix</span>的有关吗?</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;"><span lang="EN-US"><p></p></span></span></p><p></p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">新手发文,说得比较啰嗦,请各位高手指教呵。</span></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;"><span lang="EN-US"><p></p></span></span></p><p></p><p></p><p class="MsoNormal" style="MARGIN: 0cm 0cm 0pt;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">参考文献1:林海明<span lang="EN-US">,</span>张文霖<span lang="EN-US">.</span>主成分分析与因子分析的异同和<span lang="EN-US">SPSS</span>软件<span lang="EN-US">--</span>兼与刘玉玫、卢纹岱等同志商榷<span lang="EN-US">[J].</span>统计研究<span lang="EN-US">,2005.(3):65-69 <p></p></span></span></p><p></p><p></p><p class="MsoNormal" align="left" style="MARGIN: 0cm 0cm 0pt; TEXT-ALIGN: left; mso-layout-grid-align: none;"><span style="COLOR: black; FONT-FAMILY: 宋体; mso-bidi-font-size: 10.5pt; mso-hansi-font-family: 'Times New Roman'; mso-bidi-font-family: 宋体; mso-font-kerning: 0pt;">参考文献<span lang="EN-US">2</span>:<span lang="EN-US">Xiaowenzi22 </span>与<span lang="EN-US">pinksss </span>共同制作<span lang="EN-US">-SPSS </span>中主成分分析的基本操作<span lang="EN-US"> <p></p></span></span></p><p></p><p></p><br/><br/> [此贴子已经被作者于2007-10-22 1:59:38编辑过] |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明