| 所在主题: | |
| 文件名: MASS.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-351757.html | |
| 附件大小: | |
|
Modern Applied Statistics with S
用的是S语言, 但很多都和R语言一样的, 在R中一样能实现。不信可以试试。 Preface v Typographical Conventions xi 1 Introduction 1 1.1 A Quick Overview of S ....................... 3 1.2 Using S ............................... 5 1.3 An Introductory Session . . . . . ................. 6 1.4 WhatNext? ............................. 12 2 DataManipulation 13 2.1 Objects ............................... 13 2.2 Connections............................. 20 2.3 DataManipulation ......................... 27 2.4 TablesandCross-Classification................... 37 3The S Language 41 3.1 Language Layout . . ........................ 41 3.2 More on S Objects ......................... 44 3.3 ArithmeticalExpressions...................... 47 3.4 CharacterVectorOperations .................... 51 3.5 Formatting and Printing . . . . . . ................. 54 3.6 Calling Conventions for Functions ................. 55 3.7 ModelFormulae........................... 56 3.8 ControlStructures.......................... 58 3.9 ArrayandMatrixOperations.................... 60 3.10 Introduction to Classes and Methods . . . ............. 66 Graphics 69 4.1 GraphicsDevices .......................... 71 4.2 Basic Plotting Functions . . . . . ................. 72 4.3 EnhancingPlots........................... 77 4.4 FineControlofGraphics ...................... 82 4.5 Trellis Graphics . . . ........................ 89 5 Univariate Statistics 107 5.1 Probability Distributions . . . . . .................107 5.2 Generating Random Data . . . . . .................110 5.3 DataSummaries...........................111 5.4 ClassicalUnivariateStatistics....................115 5.5 RobustSummaries .........................119 5.6 DensityEstimation .........................126 5.7 Bootstrap and Permutation Methods . . . .............133 6 Linear StatisticalModels 139 6.1 AnAnalysisofCovarianceExample................139 6.2 ModelFormulaeandModelMatrices ...............144 6.3 Regression Diagnostics . . . . . . .................151 6.4 SafePrediction ...........................155 6.5 RobustandResistantRegression..................156 6.6 BootstrappingLinearModels....................163 6.7 FactorialDesignsandDesignedExperiments ...........165 6.8 An Unbalanced Four-Way Layout .................169 6.9 PredictingComputerPerformance .................177 6.10 Multiple Comparisons . . . . . . .................178 Generalized Linear Models 183 7.1 Functions for Generalized Linear Modelling . . . .........187 7.2 BinomialData............................190 7.3 PoissonandMultinomialModels..................199 7.4 ANegativeBinomialFamily ....................206 7.5 Over-DispersioninBinomialandPoissonGLMs .........208 Non-Linear and Smooth Regression 211 8.1 An Introductory Example . . . . . .................211 8.2 Fitting Non-Linear Regression Models . . .............212 8.3 Non-Linear Fitted Model Objects and Method Functions .....217 8.4 ConfidenceIntervalsforParameters ................220 8.5 Profiles ...............................226 8.6 ConstrainedNon-LinearRegression ................227 8.7 One-Dimensional Curve-Fitting . .................228 8.8 AdditiveModels ..........................232 8.9 Projection-PursuitRegression ...................238 8.10NeuralNetworks ..........................243 8.11Conclusions.............................249 9 Tree-Based Methods 251 9.1 PartitioningMethods ........................253 9.2 Implementation in rpart ......................258 9.3 Implementation in tree ......................266 10 Random and Mixed Effects 271 10.1LinearModels............................272 10.2ClassicNestedDesigns.......................279 10.3Non-LinearMixedEffectsModels .................286 10.4GeneralizedLinearMixedModels .................292 10.5GEEModels.............................299 11 ExploratoryMultivariate Analysis 301 11.1 Visualization Methods . . . . . . .................302 11.2ClusterAnalysis...........................315 11.3FactorAnalysis ...........................321 11.4DiscreteMultivariateAnalysis ...................325 Classification 331 12.1DiscriminantAnalysis .......................331 12.2ClassificationTheory........................338 12.3Non-ParametricRules........................341 12.4NeuralNetworks ..........................342 12.5 Support Vector Machines . . . . . .................344 12.6ForensicGlassExample ......................346 12.7CalibrationPlots ..........................349 Survival Analysis 353 13.1EstimatorsofSurvivorCurves ...................355 13.2ParametricModels .........................359 13.3 Cox Proportional Hazards Model . .................365 13.4FurtherExamples..........................371 14 Time Series Analysis 387 14.1 Second-Order Summaries . . . . . .................389 14.2ARIMAModels...........................397 14.3 Seasonality . ............................403 14.4 Nottingham Temperature Data . . .................406 14.5RegressionwithAutocorrelatedErrors...............411 14.6ModelsforFinancialSeries.....................414 15 Spatial Statistics 419 15.1SpatialInterpolationandSmoothing ................419 15.2Kriging ...............................425 15.3PointProcessAnalysis .......................430 16 Optimization 435 16.1UnivariateFunctions ........................435 16.2Special-PurposeOptimizationFunctions..............436 16.3GeneralOptimization........................436 Appendices A Implementation-Specific Details 447 A.1 Using S-PLUS under Unix / Linux .................447 A.2 Using S-PLUS underWindows ...................450 A.3 Using R under Unix / Linux . . . .................453 A.4 Using R underWindows ......................454 A.5 ForEmacsUsers ..........................455 BThe S-PLUS GUI 457 C Datasets, Software and Libraries 461 C.1 OurSoftware ............................461 C.2 UsingLibraries ...........................462 References 465 Index 481 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明