楼主: chenguanghua
2595 5

经典好书:MASS [推广有奖]

  • 1关注
  • 6粉丝

已卖:3333份资源

硕士生

38%

还不是VIP/贵宾

-

威望
0
论坛币
11380 个
通用积分
29.5852
学术水平
18 点
热心指数
17 点
信用等级
13 点
经验
995 点
帖子
43
精华
1
在线时间
99 小时
注册时间
2009-3-18
最后登录
2019-7-16
毕业学校
暨南大学

楼主
chenguanghua 发表于 2009-7-8 10:48:41 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Modern Applied Statistics with S


用的是S语言,
但很多都和R语言一样的,
在R中一样能实现。不信可以试试。
Preface v
Typographical Conventions xi
1 Introduction 1
1.1 A Quick Overview of S ....................... 3
1.2 Using S ............................... 5
1.3 An Introductory Session . . . . . ................. 6
1.4 WhatNext? ............................. 12
2 DataManipulation 13
2.1 Objects ............................... 13
2.2 Connections............................. 20
2.3 DataManipulation ......................... 27
2.4 TablesandCross-Classification................... 37
3The S Language 41
3.1 Language Layout . . ........................ 41
3.2 More on S Objects ......................... 44
3.3 ArithmeticalExpressions...................... 47
3.4 CharacterVectorOperations .................... 51
3.5 Formatting and Printing . . . . . . ................. 54
3.6 Calling Conventions for Functions ................. 55
3.7 ModelFormulae........................... 56
3.8 ControlStructures.......................... 58
3.9 ArrayandMatrixOperations.................... 60
3.10 Introduction to Classes and Methods . . . ............. 66
Graphics 69
4.1 GraphicsDevices .......................... 71
4.2 Basic Plotting Functions . . . . . ................. 72
4.3 EnhancingPlots........................... 77
4.4 FineControlofGraphics ...................... 82
4.5 Trellis Graphics . . . ........................ 89
5 Univariate Statistics 107
5.1 Probability Distributions . . . . . .................107
5.2 Generating Random Data . . . . . .................110
5.3 DataSummaries...........................111
5.4 ClassicalUnivariateStatistics....................115
5.5 RobustSummaries .........................119
5.6 DensityEstimation .........................126
5.7 Bootstrap and Permutation Methods . . . .............133
6 Linear StatisticalModels 139
6.1 AnAnalysisofCovarianceExample................139
6.2 ModelFormulaeandModelMatrices ...............144
6.3 Regression Diagnostics . . . . . . .................151
6.4 SafePrediction ...........................155
6.5 RobustandResistantRegression..................156
6.6 BootstrappingLinearModels....................163
6.7 FactorialDesignsandDesignedExperiments ...........165
6.8 An Unbalanced Four-Way Layout .................169
6.9 PredictingComputerPerformance .................177
6.10 Multiple Comparisons . . . . . . .................178
Generalized Linear Models 183
7.1 Functions for Generalized Linear Modelling . . . .........187
7.2 BinomialData............................190
7.3 PoissonandMultinomialModels..................199
7.4 ANegativeBinomialFamily ....................206
7.5 Over-DispersioninBinomialandPoissonGLMs .........208
Non-Linear and Smooth Regression 211
8.1 An Introductory Example . . . . . .................211
8.2 Fitting Non-Linear Regression Models . . .............212
8.3 Non-Linear Fitted Model Objects and Method Functions .....217
8.4 ConfidenceIntervalsforParameters ................220
8.5 Profiles ...............................226
8.6 ConstrainedNon-LinearRegression ................227
8.7 One-Dimensional Curve-Fitting . .................228
8.8 AdditiveModels ..........................232
8.9 Projection-PursuitRegression ...................238
8.10NeuralNetworks ..........................243
8.11Conclusions.............................249
9 Tree-Based Methods 251
9.1 PartitioningMethods ........................253
9.2 Implementation in rpart ......................258
9.3 Implementation in tree ......................266
10 Random and Mixed Effects 271
10.1LinearModels............................272
10.2ClassicNestedDesigns.......................279
10.3Non-LinearMixedEffectsModels .................286
10.4GeneralizedLinearMixedModels .................292
10.5GEEModels.............................299
11 ExploratoryMultivariate Analysis 301
11.1 Visualization Methods . . . . . . .................302
11.2ClusterAnalysis...........................315
11.3FactorAnalysis ...........................321
11.4DiscreteMultivariateAnalysis ...................325
Classification 331
12.1DiscriminantAnalysis .......................331
12.2ClassificationTheory........................338
12.3Non-ParametricRules........................341
12.4NeuralNetworks ..........................342
12.5 Support Vector Machines . . . . . .................344
12.6ForensicGlassExample ......................346
12.7CalibrationPlots ..........................349
Survival Analysis 353
13.1EstimatorsofSurvivorCurves ...................355
13.2ParametricModels .........................359
13.3 Cox Proportional Hazards Model . .................365
13.4FurtherExamples..........................371
14 Time Series Analysis 387
14.1 Second-Order Summaries . . . . . .................389
14.2ARIMAModels...........................397
14.3 Seasonality . ............................403
14.4 Nottingham Temperature Data . . .................406
14.5RegressionwithAutocorrelatedErrors...............411
14.6ModelsforFinancialSeries.....................414
15 Spatial Statistics 419
15.1SpatialInterpolationandSmoothing ................419
15.2Kriging ...............................425
15.3PointProcessAnalysis .......................430
16 Optimization 435
16.1UnivariateFunctions ........................435
16.2Special-PurposeOptimizationFunctions..............436
16.3GeneralOptimization........................436
Appendices
A Implementation-Specific Details 447
A.1 Using S-PLUS under Unix / Linux .................447
A.2 Using S-PLUS underWindows ...................450
A.3 Using R under Unix / Linux . . . .................453
A.4 Using R underWindows ......................454
A.5 ForEmacsUsers ..........................455
BThe S-PLUS GUI 457
C Datasets, Software and Libraries 461
C.1 OurSoftware ............................461
C.2 UsingLibraries ...........................462
References 465
Index 481
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:mass mas Optimization introduction manipulation 经典 好书 mass

沙发
yanbridge 发表于 2009-7-8 11:17:33
It is diffcult to me

藤椅
ruiqwy 发表于 2009-7-8 11:29:06
这本书,已经发过很多遍了,不过还是非常感谢!!学统计,学SPLUS,学R,这些书都是基础!
R is the second language for me!Using R is standing on the shoulders of giants!   Let\'s use R together!

板凳
chenguanghua 发表于 2009-7-8 11:29:58
有些章节难,也有些简单。很好的一本书,比较详细

报纸
tmdxyz 发表于 2009-7-9 07:58:35
书名是“Modern Applied Statistics with S”

地板
Isscaliu 发表于 2009-7-9 23:44:44
收下!谢谢!
It was the best of times, it was the worst of times.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-30 01:54