| 所在主题: | |
| 文件名: English_Paper.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3664918.html | |
| 附件大小: | |
|
英文标题:
《Predicting Disaggregated CPI Inflation Components via Hierarchical Recurrent Neural Networks》 --- 作者: Oren Barkan, Itamar Caspi, Allon Hammer, Noam Koenigstein --- 最新提交年份: 2020 --- 分类信息: 一级分类:Economics 经济学 二级分类:General Economics 一般经济学 分类描述:General methodological, applied, and empirical contributions to economics. 对经济学的一般方法、应用和经验贡献。 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Economics 经济学 分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题 -- --- 英文摘要: We present a hierarchical architecture based on Recurrent Neural Networks (RNNs) for predicting disaggregated inflation components of the Consumer Price Index (CPI). While the majority of existing research is focused mainly on predicting the inflation headline, many economic and financial entities are more interested in its partial disaggregated components. To this end, we developed the novel Hierarchical Recurrent Neural Network (HRNN) model that utilizes information from higher levels in the CPI hierarchy to improve predictions at the more volatile lower levels. Our evaluations, based on a large data-set from the US CPI-U index, indicate that the HRNN model significantly outperforms a vast array of well-known inflation prediction baselines. --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明