| 所在主题: | |
| 文件名: Transformation_Method_for_Solving_Hamilton-Jacobi-Bellman_Equation_for_Constrain.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3668123.html | |
| 附件大小: | |
|
英文标题:
《Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem》 --- 作者: Sona Kilianova and Daniel Sevcovic --- 最新提交年份: 2013 --- 英文摘要: In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\\\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method. --- 中文摘要: 本文提出并分析了一种基于Riccati变换的求解随机动态最优分配问题演化Hamilton-Jacobi-Bellman方程的方法。我们展示了如何将完全非线性的Hamilton-Jacobi-Bellman方程转化为一个拟线性抛物方程,其扩散函数作为某个参数凸优化问题的值函数。虽然扩散函数不需要足够光滑,但我们能够证明它的存在,经典H的唯一性及其有用界的推导\\“旧的光滑解。我们进一步构造了一个基于控制方程有限体积近似的全隐式迭代数值格式。通过该方法的收敛率,将数值解与半显式行波解进行了比较。我们以德国DAX 30指数为例,计算了一个投资组合问题的最优策略方法的应用。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Portfolio Management 项目组合管理 分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement 证券选择与优化、资本配置、投资策略与绩效评价 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明