搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Local_Variance_Gamma_and_Explicit_Calibration_to_Option_Prices.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3668672.html
附件大小:
646.65 KB   举报本内容
英文标题:
《Local Variance Gamma and Explicit Calibration to Option Prices》
---
作者:
Peter Carr and Sergey Nadtochiy
---
最新提交年份:
2014
---
英文摘要:
In some options markets (e.g. commodities), options are listed with only a single maturity for each underlying. In others, (e.g. equities, currencies), options are listed with multiple maturities. In this paper, we provide an algorithm for calibrating a pure jump Markov martingale model to match the market prices of European options of multiple strikes and maturities. This algorithm only requires solutions of several one-dimensional root-search problems, as well as application of elementary functions. We show how to construct a time-homogeneous process which meets a single smile, and a piecewise time-homogeneous process which can meet multiple smiles.
---
中文摘要:
在一些期权市场(如商品),期权上市时每个标的只有一个到期日。在其他情况下(如股票、货币),期权以多个到期日列出。在本文中,我们提供了一个校准纯跳跃马尔可夫鞅模型的算法,以匹配多重行使和到期的欧式期权的市场价格。该算法只需要求解几个一维的根搜索问题,并应用初等函数。我们展示了如何构造一个满足单个微笑的时间齐次过程,以及一个满足多个微笑的分段时间齐次过程。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE\'s, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-10 08:39