| 所在主题: | |
| 文件名: Small-time_asymptotics_for_a_general_local-stochastic_volatility_model_with_a_ju.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3672042.html | |
| 附件大小: | |
|
英文标题:
《Small-time asymptotics for a general local-stochastic volatility model with a jump-to-default: curvature and the heat kernel expansion》 --- 作者: John Armstrong, Martin Forde, Matthew Lorig, Hongzhong Zhang --- 最新提交年份: 2016 --- 英文摘要: We compute a sharp small-time estimate for implied volatility under a general uncorrelated local-stochastic volatility model. For this we use the Bellaiche \\cite{Bel81} heat kernel expansion combined with Laplace\'s method to integrate over the volatility variable on a compact set, and (after a gauge transformation) we use the Davies \\cite{Dav88} upper bound for the heat kernel on a manifold with bounded Ricci curvature to deal with the tail integrals. If the correlation $\\rho < 0$, our approach still works if the drift of the volatility takes a specific functional form and there is no local volatility component, and our results include the SABR model for $\\beta=1, \\rho \\le 0$. \\bl{For uncorrelated stochastic volatility models, our results also include a SABR-type model with $\\beta=1$ and an affine mean-reverting drift, and the exponential Ornstein-Uhlenbeck model.} We later augment the model with a single jump-to-default with intensity $\\lm$, which produces qualitatively different behaviour for the short-maturity smile; in particular, for $\\rho=0$, log-moneyness $x > 0$, the implied volatility increases by $\\lm f(x) t +o(t) $ for some function $f(x)$ which blows up as $x \\searrow 0$. Finally, we compare our result with the general asymptotic expansion in Lorig, Pagliarani \\& Pascucci \\cite{LPP15}, and we verify our results numerically for the SABR model using Monte Carlo simulation and the exact closed-form solution given in Antonov \\& Spector \\cite{AS12} for the case $\\rho=0$. --- 中文摘要: 在一般的不相关局部随机波动率模型下,我们计算了隐含波动率的一个精确的小时间估计。为此,我们使用Bellaiche{Bel81}热核展开结合拉普拉斯方法对紧致集上的波动变量进行积分,并且(经过规范变换后)我们使用具有有界Ricci曲率的流形上热核的Davies{Dav88}上界来处理尾积分。如果相关性$\\rho<0$,如果波动率的漂移采用特定的函数形式,并且没有局部波动性成分,我们的方法仍然有效,我们的结果包括$\\beta=1、\\rho\\le 0$的SABR模型。\\bl{对于不相关的随机波动率模型,我们的结果还包括$\\beta=1$和仿射均值回复漂移的SABR型模型,以及指数Ornstein-Uhlenbeck模型。}后来,我们用强度$\\lm$对模型进行了一次跳转,以违约,这会对短期成熟微笑产生质的不同行为;特别是,当$\\rho=0$、对数货币性$x>0$时,某些函数$f(x)$的隐含波动率增加了$\\lm f(x)t+o(t)$,最后变成了$x\\searrow 0$。最后,我们将我们的结果与Lorig、Pagliarani和Pascucci{LPP15}中的一般渐近展开进行了比较,并用蒙特卡罗模拟和Antonov\\&Spector{AS12}中给出的$\\rho=0$情况下的精确闭式解对SABR模型的结果进行了数值验证。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Pricing of Securities 证券定价 分类描述:Valuation and hedging of financial securities, their derivatives, and structured products 金融证券及其衍生产品和结构化产品的估值和套期保值 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明