搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  A_Polynomial_Scheme_of_Asymptotic_Expansion_for_Backward_SDEs_and_Option_pricing.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3672999.html
附件大小:
724.28 KB   举报本内容
英文标题:
《A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option
pricing》
---
作者:
Masaaki Fujii
---
最新提交年份:
2014
---
英文摘要:
A new asymptotic expansion scheme for backward SDEs (BSDEs) is proposed.The perturbation parameter is introduced just to scale the forward stochastic variables within a BSDE. In contrast to the standard small-diffusion asymptotic expansion method, the dynamics of variables given by the forward SDEs is treated exactly. Although it requires a special form of the quadratic covariation terms of the continuous part, it allows rather generic drift as well as jump components to exist. The resultant approximation is given by a polynomial function in terms of the unperturbed forward variables whose coefficients are uniquely specified by the solution of the recursive system of linear ODEs. Applications to a jump-extended Heston and lambda-SABR models for European contingent claims, as well as the utility-optimization problem in the presence of a terminal liability are discussed.
---
中文摘要:
提出了一种新的后向随机微分方程(BSDE)的渐近展开格式。引入扰动参数只是为了在BSDE内标度正向随机变量。与标准的小扩散渐近展开法相比,前向SDE给出的变量动力学得到了精确的处理。虽然它需要连续部分的二次协变项的一种特殊形式,但它允许存在相当普遍的漂移和跳跃分量。由此得到的近似值由一个多项式函数给出,该函数表示未受干扰的前向变量,其系数由线性常微分方程递归系统的解唯一指定。讨论了跳跃扩展的Heston和lambda-SABR模型在欧洲未定权益中的应用,以及存在终端负债时的效用优化问题。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-11 10:08