| 所在主题: | |
| 文件名: A_Polynomial_Scheme_of_Asymptotic_Expansion_for_Backward_SDEs_and_Option_pricing.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3672999.html | |
| 附件大小: | |
|
英文标题:
《A Polynomial Scheme of Asymptotic Expansion for Backward SDEs and Option pricing》 --- 作者: Masaaki Fujii --- 最新提交年份: 2014 --- 英文摘要: A new asymptotic expansion scheme for backward SDEs (BSDEs) is proposed.The perturbation parameter is introduced just to scale the forward stochastic variables within a BSDE. In contrast to the standard small-diffusion asymptotic expansion method, the dynamics of variables given by the forward SDEs is treated exactly. Although it requires a special form of the quadratic covariation terms of the continuous part, it allows rather generic drift as well as jump components to exist. The resultant approximation is given by a polynomial function in terms of the unperturbed forward variables whose coefficients are uniquely specified by the solution of the recursive system of linear ODEs. Applications to a jump-extended Heston and lambda-SABR models for European contingent claims, as well as the utility-optimization problem in the presence of a terminal liability are discussed. --- 中文摘要: 提出了一种新的后向随机微分方程(BSDE)的渐近展开格式。引入扰动参数只是为了在BSDE内标度正向随机变量。与标准的小扩散渐近展开法相比,前向SDE给出的变量动力学得到了精确的处理。虽然它需要连续部分的二次协变项的一种特殊形式,但它允许存在相当普遍的漂移和跳跃分量。由此得到的近似值由一个多项式函数给出,该函数表示未受干扰的前向变量,其系数由线性常微分方程递归系统的解唯一指定。讨论了跳跃扩展的Heston和lambda-SABR模型在欧洲未定权益中的应用,以及存在终端负债时的效用优化问题。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Pricing of Securities 证券定价 分类描述:Valuation and hedging of financial securities, their derivatives, and structured products 金融证券及其衍生产品和结构化产品的估值和套期保值 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明