搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Error_analysis_in_Fourier_methods_for_option_pricing.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3674876.html
附件大小:
597.03 KB   举报本内容
英文标题:
《Error analysis in Fourier methods for option pricing》
---
作者:
Fabi\\\'an Crocce, Juho H\\\"app\\\"ol\\\"a, Jonas Kiessling, Ra\\\'ul Tempone
---
最新提交年份:
2015
---
英文摘要:
We provide a bound for the error committed when using a Fourier method to price European options when the underlying follows an exponential \\levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE). Applying a Fourier transformation to the PIDE yields an ordinary differential equation that can be solved analytically in terms of the characteristic exponent of the \\levy process. Then, a numerical inverse Fourier transform allows us to obtain the option price. We present a novel bound for the error and use this bound to set the parameters for the numerical method. We analyse the properties of the bound for a dissipative and pure-jump example. The bound presented is independent of the asymptotic behaviour of option prices at extreme asset prices. The error bound can be decomposed into a product of terms resulting from the dynamics and the option payoff, respectively. The analysis is supplemented by numerical examples that demonstrate results comparable to and superior to the existing literature.
---
中文摘要:
当标的资产遵循指数动态时,我们提供了使用傅里叶方法对欧式期权定价时所犯错误的界限。期权的价格由偏积分微分方程(PIDE)描述。将傅里叶变换应用于PIDE可产生一个常微分方程,该方程可根据莱维过程的特征指数进行解析求解。然后,通过数值逆傅里叶变换,我们可以得到期权价格。我们提出了一个新的误差界,并使用该界来设置数值方法的参数。我们分析了一个耗散纯跳跃例子的界的性质。给出的界限与极端资产价格下期权价格的渐近行为无关。误差界可以分解为分别由动态和期权收益产生的项的乘积。通过数值例子对分析进行了补充,证明了与现有文献相当且优于现有文献的结果。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-26 23:01