| 所在主题: | |
| 文件名: Optimally_Investing_to_Reach_a_Bequest_Goal.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3674999.html | |
| 附件大小: | |
|
英文标题:
《Optimally Investing to Reach a Bequest Goal》 --- 作者: Erhan Bayraktar and Virginia R. Young --- 最新提交年份: 2016 --- 英文摘要: We determine the optimal strategy for investing in a Black-Scholes market in order to maximize the probability that wealth at death meets a bequest goal $b$, a type of goal-seeking problem, as pioneered by Dubins and Savage (1965, 1976). The individual consumes at a constant rate $c$, so the level of wealth required for risklessly meeting consumption equals $c/r$, in which $r$ is the rate of return of the riskless asset. Our problem is related to, but different from, the goal-reaching problems of Browne (1997). First, Browne (1997, Section 3.1) maximizes the probability that wealth reaches $b < c/r$ before it reaches $a < b$. Browne\'s game ends when wealth reaches $b$. By contrast, for the problem we consider, the game continues until the individual dies or until wealth reaches 0; reaching $b$ and then falling below it before death does not count. Second, Browne (1997, Section 4.2) maximizes the expected discounted reward of reaching $b > c/r$ before wealth reaches $c/r$. If one interprets his discount rate as a hazard rate, then our two problems are {\\it mathematically} equivalent for the special case for which $b > c/r$, with ruin level $c/r$. However, we obtain different results because we set the ruin level at 0, thereby allowing the game to continue when wealth falls below $c/r$. --- 中文摘要: 我们确定投资布莱克-斯科尔斯市场的最佳策略,以最大限度地提高死亡财富达到遗产目标b$的概率,这是一种目标寻求问题,由杜宾斯和萨维奇(Dubins and Savage,19651976)率先提出。个人以固定利率消费$c$,因此无风险满足消费所需的财富水平等于$c/r$,其中$r$是无风险资产的回报率。我们的问题与Browne(1997)的目标达成问题有关,但不同。首先,Browne(1997年,第3.1节)最大化了财富在达到$a<b$之前达到$b<c/r$的概率。当财富达到亿美元时,布朗的游戏就结束了。相比之下,对于我们考虑的问题,游戏一直持续到个人死亡或财富达到0;达到b美元,然后在死前跌破它并不算在内。其次,Browne(1997年,第4.2节)在财富达到$c/r$之前,将预期的折扣回报最大化,即达到$b>c/r$。如果一个人把他的贴现率解释为一个风险率,那么我们的两个问题对于特殊情况是{\\it数学上}等价的,对于这种特殊情况,$b>c/r$,破产水平为$c/r$。然而,我们得到了不同的结果,因为我们将破产水平设置为0,从而允许当财富低于$c/r$时博弈继续。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- 一级分类:Mathematics 数学 二级分类:Optimization and Control 优化与控制 分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory 运筹学,线性规划,控制论,系统论,最优控制,博弈论 -- 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Portfolio Management 项目组合管理 分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement 证券选择与优化、资本配置、投资策略与绩效评价 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明