| 所在主题: | |
| 文件名: Application_of_Operator_Splitting_Methods_in_Finance.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3675157.html | |
| 附件大小: | |
|
英文标题:
《Application of Operator Splitting Methods in Finance》 --- 作者: Karel in \'t Hout, Jari Toivanen --- 最新提交年份: 2015 --- 英文摘要: Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems. Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g. given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems. Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black-Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps. --- 中文摘要: 金融衍生工具定价的目的是确定标的资产的金融合同的公允价值。这里我们考虑偏微分方程框架下的期权定价。当代模型导致对流扩散型的一维或多维抛物问题及其推广。为了有效地数值求解这些问题,本文综述了各种算子分裂方法。本文讨论了多维问题的交替方向隐式(ADI)分裂格式,例如由随机波动率(SV)模型给出的分裂格式。对于跳跃模型,考虑了有效处理非局部跳跃算子的隐-显(IMEX)方法。对于美式期权,描述了一种易于实现的算子分裂方法,用于求解由此产生的线性互补问题。数值实验证明了分裂格式的稳定性和收敛性。在这里,欧洲和美国的看跌期权被考虑在四种资产价格模型下:经典的Black-Scholes模型、Merton跳跃扩散模型、Heston SV模型和带跳跃的Bates SV模型。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明