| 所在主题: | |
| 文件名: Chebyshev_Interpolation_for_Parametric_Option_Pricing.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3675245.html | |
| 附件大小: | |
|
英文标题:
《Chebyshev Interpolation for Parametric Option Pricing》 --- 作者: Maximilian Ga{\\ss}, Kathrin Glau, Mirco Mahlstedt, Maximilian Mair --- 最新提交年份: 2016 --- 英文摘要: Recurrent tasks such as pricing, calibration and risk assessment need to be executed accurately and in real-time. Simultaneously we observe an increase in model sophistication on the one hand and growing demands on the quality of risk management on the other. To address the resulting computational challenges, it is natural to exploit the recurrent nature of these tasks. We concentrate on Parametric Option Pricing (POP) and show that polynomial interpolation in the parameter space promises to reduce run-times while maintaining accuracy. The attractive properties of Chebyshev interpolation and its tensorized extension enable us to identify criteria for (sub)exponential convergence and explicit error bounds. We show that these results apply to a variety of European (basket) options and affine asset models. Numerical experiments confirm our findings. Exploring the potential of the method further, we empirically investigate the efficiency of the Chebyshev method for multivariate and path-dependent options. --- 中文摘要: 定价、校准和风险评估等经常性任务需要准确、实时地执行。同时,我们观察到,一方面,模型复杂度有所提高,另一方面,对风险管理质量的要求也越来越高。为了解决由此带来的计算挑战,自然要利用这些任务的重复性。我们专注于参数期权定价(POP),并证明参数空间中的多项式插值可以在保持精度的同时减少运行时间。切比雪夫插值及其张量化扩展的吸引人的性质使我们能够确定(次)指数收敛的标准和显式误差界。我们证明了这些结果适用于各种欧洲(篮子)期权和仿射资产模型。数值实验证实了我们的发现。为了进一步探索该方法的潜力,我们实证研究了切比雪夫方法对多变量和路径依赖期权的有效性。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明