| 所在主题: | |
| 文件名: Double-jump_stochastic_volatility_model_for_VIX:_evidence_from_VVIX.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3675410.html | |
| 附件大小: | |
|
英文标题:
《Double-jump stochastic volatility model for VIX: evidence from VVIX》 --- 作者: Xin Zang, Jun Ni, Jing-Zhi Huang and Lan Wu --- 最新提交年份: 2015 --- 英文摘要: The paper studies the continuous-time dynamics of VIX with stochastic volatility and jumps in VIX and volatility. Built on the general parametric affine model with stochastic volatility and jump in logarithm of VIX, we derive a linear relation between the stochastic volatility factor and VVIX index. We detect the existence of co-jump of VIX and VVIX and put forward a double-jump stochastic volatility model for VIX through its joint property with VVIX. With VVIX index as a proxy for the stochastic volatility, we use MCMC method to estimate the dynamics of VIX. Comparing nested models on VIX, we show the jump in VIX and the volatility factor is statistically significant. The jump intensity is also statedependent. We analyze the impact of jump factor on the VIX dynamics. --- 中文摘要: 本文研究了波动率为随机波动的波动率指数的连续时间动力学,以及波动率和波动率的跳跃。基于随机波动率和波动率对数跳变的一般参数仿射模型,我们推导了随机波动率因子与VVIX指数之间的线性关系。我们发现了VIX和VVIX的共同跳变的存在性,并通过其与VVIX的联合性质,提出了VIX的双跳随机波动模型。以VVIX指数作为随机波动率的代表,我们使用MCMC方法来估计VIX的动态。通过比较波动率指数上的嵌套模型,我们发现波动率指数和波动率因子在统计学上是显著的。跳跃强度也取决于状态。我们分析了跳跃因子对波动率动力学的影响。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Computational Finance 计算金融学 分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling 计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明