搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Early_warning_of_large_volatilities_based_on_recurrence_interval_analysis_in_Chi.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3676034.html
附件大小:
662.22 KB   举报本内容
英文标题:
《Early warning of large volatilities based on recurrence interval
analysis in Chinese stock markets》
---
作者:
Zhi-Qiang Jiang (ECUST, BU), Askery A. Canabarro (UFAL, BU), Boris
Podobnik (UR), H. Eugene Stanley (BU), and Wei-Xing Zhou (ECUST)
---
最新提交年份:
2015
---
英文摘要:
Being able to forcast extreme volatility is a central issue in financial risk management. We present a large volatility predicting method based on the distribution of recurrence intervals between volatilities exceeding a certain threshold $Q$ for a fixed expected recurrence time $\\tau_Q$. We find that the recurrence intervals are well approximated by the $q$-exponential distribution for all stocks and all $\\tau_Q$ values. Thus a analytical formula for determining the hazard probability $W(\\Delta t |t)$ that a volatility above $Q$ will occur within a short interval $\\Delta t$ if the last volatility exceeding $Q$ happened $t$ periods ago can be directly derived from the $q$-exponential distribution, which is found to be in good agreement with the empirical hazard probability from real stock data. Using these results, we adopt a decision-making algorithm for triggering the alarm of the occurrence of the next volatility above $Q$ based on the hazard probability. Using a \"receiver operator characteristic\" (ROC) analysis, we find that this predicting method efficiently forecasts the occurrance of large volatility events in real stock data. Our analysis may help us better understand reoccurring large volatilities and more accurately quantify financial risks in stock markets.
---
中文摘要:
能够预测极端波动是金融风险管理的核心问题。我们提出了一种大波动率预测方法,该方法基于在固定的预期重现时间$\\tau_Q$下,超过某个阈值$Q$的波动率之间的重现间隔分布。我们发现,对于所有股票和所有$\\tau_q$值,递归区间都很好地近似于$q$指数分布。因此,如果最后一次波动超过$Q$发生在$t$时期之前,则确定$Q$以上的波动将在短时间内发生的风险概率$W(\\Delta t | t)$的分析公式可以直接从$Q$指数分布中导出,这与真实股票数据的经验风险概率非常一致。利用这些结果,我们采用了一种决策算法,根据风险概率触发下一个高于$Q$的波动的警报。通过“接收器-运算子特征”(ROC)分析,我们发现这种预测方法可以有效地预测真实股票数据中大波动事件的发生。我们的分析可能有助于我们更好地理解再次发生的巨大波动,并更准确地量化股市中的金融风险。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-11 18:29